A comparative analysis of machine learning approaches to predict C. difficile infection in hospitalized patients
•Clostridioides difficile is a leading cause of infectious diarrhea in hospitalized patients.•Machine learning algorithms can predict Clostridioides difficile with excellent discrimination.•XGBoost maintained predictive performance across a hold-out test set and an external dataset Interventions to...
Gespeichert in:
Veröffentlicht in: | American journal of infection control 2022-03, Vol.50 (3), p.250-257 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 257 |
---|---|
container_issue | 3 |
container_start_page | 250 |
container_title | American journal of infection control |
container_volume | 50 |
creator | Panchavati, Saarang Zelin, Nicole S. Garikipati, Anurag Pellegrini, Emily Iqbal, Zohora Barnes, Gina Hoffman, Jana Calvert, Jacob Mao, Qingqing Das, Ritankar |
description | •Clostridioides difficile is a leading cause of infectious diarrhea in hospitalized patients.•Machine learning algorithms can predict Clostridioides difficile with excellent discrimination.•XGBoost maintained predictive performance across a hold-out test set and an external dataset
Interventions to better prevent or manage Clostridioides difficile infection (CDI) may significantly reduce morbidity, mortality, and healthcare spending.
We present a retrospective study using electronic health record data from over 700 United States hospitals. A subset of hospitals was used to develop machine learning algorithms (MLAs); the remaining hospitals served as an external test set. Three MLAs were evaluated: gradient-boosted decision trees (XGBoost), Deep Long Short Term Memory neural network, and one-dimensional convolutional neural network. MLA performance was evaluated with area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, diagnostic odds ratios and likelihood ratios.
The development dataset contained 13,664,840 inpatient encounters with 80,046 CDI encounters; the external dataset contained 1,149,088 inpatient encounters with 7,107 CDI encounters. The highest AUROCs were achieved for XGB, Deep Long Short Term Memory neural network, and one-dimensional convolutional neural network via abstaining from use of specialized training techniques, resampling in isolation, and resampling and output bias in combination, respectively. XGBoost achieved the highest AUROC.
MLAs can predict future CDI in hospitalized patients using just 6 hours of data. In clinical practice, a machine-learning based tool may support prophylactic measures, earlier diagnosis, and more timely implementation of infection control measures. |
doi_str_mv | 10.1016/j.ajic.2021.11.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2622479552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196655321007574</els_id><sourcerecordid>2622479552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-f9c8d282cac7806d5c08cd34c62b2792d6ff201765a79dc6055c517141065c363</originalsourceid><addsrcrecordid>eNp9kEFv1DAQha0KRLeFP8AB-cglwR6vnUTiUq0KVKrEpZwtdzxuvUriYGcrtb8er7Zw5DSj0XtvZj7GPkrRSiHNl33r9hFbECBbKVsh4YxtpIauUTCYN2wj5GAao7U6Zxel7IUQgzL6HTtXWphO9bBhyxXHNC0uuzU-EXezG59LLDwFPjl8jDPxkVye4_zA3bLkVIdU-Jr4kslHXPmu5T6GEDGOxOMcCNeY5trxx1SWuLoxvpDnS11A81res7fBjYU-vNZL9uvb9d3uR3P78_vN7uq2QaXN2oQBew89oMOuF8ZrFD16tUUD99AN4E0IIGRntOsGj0ZojVp2ciuF0aiMumSfT7n15t8HKqudYkEaRzdTOhQLBmDbDVpDlcJJijmVkinYJcfJ5WcrhT2Stnt7JG2PpK2UtpKupk-v-Yf7ifw_y1-0VfD1JKD65VOkbAtWAlip5crI-hT_l_8HQn6P3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622479552</pqid></control><display><type>article</type><title>A comparative analysis of machine learning approaches to predict C. difficile infection in hospitalized patients</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Panchavati, Saarang ; Zelin, Nicole S. ; Garikipati, Anurag ; Pellegrini, Emily ; Iqbal, Zohora ; Barnes, Gina ; Hoffman, Jana ; Calvert, Jacob ; Mao, Qingqing ; Das, Ritankar</creator><creatorcontrib>Panchavati, Saarang ; Zelin, Nicole S. ; Garikipati, Anurag ; Pellegrini, Emily ; Iqbal, Zohora ; Barnes, Gina ; Hoffman, Jana ; Calvert, Jacob ; Mao, Qingqing ; Das, Ritankar</creatorcontrib><description>•Clostridioides difficile is a leading cause of infectious diarrhea in hospitalized patients.•Machine learning algorithms can predict Clostridioides difficile with excellent discrimination.•XGBoost maintained predictive performance across a hold-out test set and an external dataset
Interventions to better prevent or manage Clostridioides difficile infection (CDI) may significantly reduce morbidity, mortality, and healthcare spending.
We present a retrospective study using electronic health record data from over 700 United States hospitals. A subset of hospitals was used to develop machine learning algorithms (MLAs); the remaining hospitals served as an external test set. Three MLAs were evaluated: gradient-boosted decision trees (XGBoost), Deep Long Short Term Memory neural network, and one-dimensional convolutional neural network. MLA performance was evaluated with area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, diagnostic odds ratios and likelihood ratios.
The development dataset contained 13,664,840 inpatient encounters with 80,046 CDI encounters; the external dataset contained 1,149,088 inpatient encounters with 7,107 CDI encounters. The highest AUROCs were achieved for XGB, Deep Long Short Term Memory neural network, and one-dimensional convolutional neural network via abstaining from use of specialized training techniques, resampling in isolation, and resampling and output bias in combination, respectively. XGBoost achieved the highest AUROC.
MLAs can predict future CDI in hospitalized patients using just 6 hours of data. In clinical practice, a machine-learning based tool may support prophylactic measures, earlier diagnosis, and more timely implementation of infection control measures.</description><identifier>ISSN: 0196-6553</identifier><identifier>EISSN: 1527-3296</identifier><identifier>DOI: 10.1016/j.ajic.2021.11.012</identifier><identifier>PMID: 35067382</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithm ; CDI ; Clostridioides difficile ; Clostridium Infections - diagnosis ; Clostridium Infections - epidemiology ; Electronic health record ; Humans ; Machine Learning ; Prediction ; Retrospective Studies ; ROC Curve ; XGBoost</subject><ispartof>American journal of infection control, 2022-03, Vol.50 (3), p.250-257</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-f9c8d282cac7806d5c08cd34c62b2792d6ff201765a79dc6055c517141065c363</citedby><cites>FETCH-LOGICAL-c356t-f9c8d282cac7806d5c08cd34c62b2792d6ff201765a79dc6055c517141065c363</cites><orcidid>0000-0001-6001-6723 ; 0000-0002-7745-3900 ; 0000-0001-7065-8367 ; 0000-0002-2230-2187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ajic.2021.11.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35067382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Panchavati, Saarang</creatorcontrib><creatorcontrib>Zelin, Nicole S.</creatorcontrib><creatorcontrib>Garikipati, Anurag</creatorcontrib><creatorcontrib>Pellegrini, Emily</creatorcontrib><creatorcontrib>Iqbal, Zohora</creatorcontrib><creatorcontrib>Barnes, Gina</creatorcontrib><creatorcontrib>Hoffman, Jana</creatorcontrib><creatorcontrib>Calvert, Jacob</creatorcontrib><creatorcontrib>Mao, Qingqing</creatorcontrib><creatorcontrib>Das, Ritankar</creatorcontrib><title>A comparative analysis of machine learning approaches to predict C. difficile infection in hospitalized patients</title><title>American journal of infection control</title><addtitle>Am J Infect Control</addtitle><description>•Clostridioides difficile is a leading cause of infectious diarrhea in hospitalized patients.•Machine learning algorithms can predict Clostridioides difficile with excellent discrimination.•XGBoost maintained predictive performance across a hold-out test set and an external dataset
Interventions to better prevent or manage Clostridioides difficile infection (CDI) may significantly reduce morbidity, mortality, and healthcare spending.
We present a retrospective study using electronic health record data from over 700 United States hospitals. A subset of hospitals was used to develop machine learning algorithms (MLAs); the remaining hospitals served as an external test set. Three MLAs were evaluated: gradient-boosted decision trees (XGBoost), Deep Long Short Term Memory neural network, and one-dimensional convolutional neural network. MLA performance was evaluated with area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, diagnostic odds ratios and likelihood ratios.
The development dataset contained 13,664,840 inpatient encounters with 80,046 CDI encounters; the external dataset contained 1,149,088 inpatient encounters with 7,107 CDI encounters. The highest AUROCs were achieved for XGB, Deep Long Short Term Memory neural network, and one-dimensional convolutional neural network via abstaining from use of specialized training techniques, resampling in isolation, and resampling and output bias in combination, respectively. XGBoost achieved the highest AUROC.
MLAs can predict future CDI in hospitalized patients using just 6 hours of data. In clinical practice, a machine-learning based tool may support prophylactic measures, earlier diagnosis, and more timely implementation of infection control measures.</description><subject>Algorithm</subject><subject>CDI</subject><subject>Clostridioides difficile</subject><subject>Clostridium Infections - diagnosis</subject><subject>Clostridium Infections - epidemiology</subject><subject>Electronic health record</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Prediction</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>XGBoost</subject><issn>0196-6553</issn><issn>1527-3296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFv1DAQha0KRLeFP8AB-cglwR6vnUTiUq0KVKrEpZwtdzxuvUriYGcrtb8er7Zw5DSj0XtvZj7GPkrRSiHNl33r9hFbECBbKVsh4YxtpIauUTCYN2wj5GAao7U6Zxel7IUQgzL6HTtXWphO9bBhyxXHNC0uuzU-EXezG59LLDwFPjl8jDPxkVye4_zA3bLkVIdU-Jr4kslHXPmu5T6GEDGOxOMcCNeY5trxx1SWuLoxvpDnS11A81res7fBjYU-vNZL9uvb9d3uR3P78_vN7uq2QaXN2oQBew89oMOuF8ZrFD16tUUD99AN4E0IIGRntOsGj0ZojVp2ciuF0aiMumSfT7n15t8HKqudYkEaRzdTOhQLBmDbDVpDlcJJijmVkinYJcfJ5WcrhT2Stnt7JG2PpK2UtpKupk-v-Yf7ifw_y1-0VfD1JKD65VOkbAtWAlip5crI-hT_l_8HQn6P3Q</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Panchavati, Saarang</creator><creator>Zelin, Nicole S.</creator><creator>Garikipati, Anurag</creator><creator>Pellegrini, Emily</creator><creator>Iqbal, Zohora</creator><creator>Barnes, Gina</creator><creator>Hoffman, Jana</creator><creator>Calvert, Jacob</creator><creator>Mao, Qingqing</creator><creator>Das, Ritankar</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6001-6723</orcidid><orcidid>https://orcid.org/0000-0002-7745-3900</orcidid><orcidid>https://orcid.org/0000-0001-7065-8367</orcidid><orcidid>https://orcid.org/0000-0002-2230-2187</orcidid></search><sort><creationdate>202203</creationdate><title>A comparative analysis of machine learning approaches to predict C. difficile infection in hospitalized patients</title><author>Panchavati, Saarang ; Zelin, Nicole S. ; Garikipati, Anurag ; Pellegrini, Emily ; Iqbal, Zohora ; Barnes, Gina ; Hoffman, Jana ; Calvert, Jacob ; Mao, Qingqing ; Das, Ritankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-f9c8d282cac7806d5c08cd34c62b2792d6ff201765a79dc6055c517141065c363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithm</topic><topic>CDI</topic><topic>Clostridioides difficile</topic><topic>Clostridium Infections - diagnosis</topic><topic>Clostridium Infections - epidemiology</topic><topic>Electronic health record</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Prediction</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>XGBoost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panchavati, Saarang</creatorcontrib><creatorcontrib>Zelin, Nicole S.</creatorcontrib><creatorcontrib>Garikipati, Anurag</creatorcontrib><creatorcontrib>Pellegrini, Emily</creatorcontrib><creatorcontrib>Iqbal, Zohora</creatorcontrib><creatorcontrib>Barnes, Gina</creatorcontrib><creatorcontrib>Hoffman, Jana</creatorcontrib><creatorcontrib>Calvert, Jacob</creatorcontrib><creatorcontrib>Mao, Qingqing</creatorcontrib><creatorcontrib>Das, Ritankar</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of infection control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panchavati, Saarang</au><au>Zelin, Nicole S.</au><au>Garikipati, Anurag</au><au>Pellegrini, Emily</au><au>Iqbal, Zohora</au><au>Barnes, Gina</au><au>Hoffman, Jana</au><au>Calvert, Jacob</au><au>Mao, Qingqing</au><au>Das, Ritankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative analysis of machine learning approaches to predict C. difficile infection in hospitalized patients</atitle><jtitle>American journal of infection control</jtitle><addtitle>Am J Infect Control</addtitle><date>2022-03</date><risdate>2022</risdate><volume>50</volume><issue>3</issue><spage>250</spage><epage>257</epage><pages>250-257</pages><issn>0196-6553</issn><eissn>1527-3296</eissn><abstract>•Clostridioides difficile is a leading cause of infectious diarrhea in hospitalized patients.•Machine learning algorithms can predict Clostridioides difficile with excellent discrimination.•XGBoost maintained predictive performance across a hold-out test set and an external dataset
Interventions to better prevent or manage Clostridioides difficile infection (CDI) may significantly reduce morbidity, mortality, and healthcare spending.
We present a retrospective study using electronic health record data from over 700 United States hospitals. A subset of hospitals was used to develop machine learning algorithms (MLAs); the remaining hospitals served as an external test set. Three MLAs were evaluated: gradient-boosted decision trees (XGBoost), Deep Long Short Term Memory neural network, and one-dimensional convolutional neural network. MLA performance was evaluated with area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, diagnostic odds ratios and likelihood ratios.
The development dataset contained 13,664,840 inpatient encounters with 80,046 CDI encounters; the external dataset contained 1,149,088 inpatient encounters with 7,107 CDI encounters. The highest AUROCs were achieved for XGB, Deep Long Short Term Memory neural network, and one-dimensional convolutional neural network via abstaining from use of specialized training techniques, resampling in isolation, and resampling and output bias in combination, respectively. XGBoost achieved the highest AUROC.
MLAs can predict future CDI in hospitalized patients using just 6 hours of data. In clinical practice, a machine-learning based tool may support prophylactic measures, earlier diagnosis, and more timely implementation of infection control measures.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35067382</pmid><doi>10.1016/j.ajic.2021.11.012</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6001-6723</orcidid><orcidid>https://orcid.org/0000-0002-7745-3900</orcidid><orcidid>https://orcid.org/0000-0001-7065-8367</orcidid><orcidid>https://orcid.org/0000-0002-2230-2187</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-6553 |
ispartof | American journal of infection control, 2022-03, Vol.50 (3), p.250-257 |
issn | 0196-6553 1527-3296 |
language | eng |
recordid | cdi_proquest_miscellaneous_2622479552 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Algorithm CDI Clostridioides difficile Clostridium Infections - diagnosis Clostridium Infections - epidemiology Electronic health record Humans Machine Learning Prediction Retrospective Studies ROC Curve XGBoost |
title | A comparative analysis of machine learning approaches to predict C. difficile infection in hospitalized patients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20analysis%20of%20machine%20learning%20approaches%20to%20predict%20C.%20difficile%20infection%20in%20hospitalized%20patients&rft.jtitle=American%20journal%20of%20infection%20control&rft.au=Panchavati,%20Saarang&rft.date=2022-03&rft.volume=50&rft.issue=3&rft.spage=250&rft.epage=257&rft.pages=250-257&rft.issn=0196-6553&rft.eissn=1527-3296&rft_id=info:doi/10.1016/j.ajic.2021.11.012&rft_dat=%3Cproquest_cross%3E2622479552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622479552&rft_id=info:pmid/35067382&rft_els_id=S0196655321007574&rfr_iscdi=true |