Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors

Ultratransparent electrodes have attracted considerable attention in optoelectronics and energy technology. However, balancing energy storage capability and transparency remains challenging. Herein, an in situ strategy employing a temporally and spatially shaped femtosecond laser is reported for pho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-03, Vol.34 (12), p.e2110013-n/a
Hauptverfasser: Yuan, Yongjiu, Jiang, Lan, Li, Xin, Zuo, Pei, Zhang, Xueqiang, Lian, Yiling, Ma, Yunlong, Liang, Misheng, Zhao, Yang, Qu, Liangti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page e2110013
container_title Advanced materials (Weinheim)
container_volume 34
creator Yuan, Yongjiu
Jiang, Lan
Li, Xin
Zuo, Pei
Zhang, Xueqiang
Lian, Yiling
Ma, Yunlong
Liang, Misheng
Zhao, Yang
Qu, Liangti
description Ultratransparent electrodes have attracted considerable attention in optoelectronics and energy technology. However, balancing energy storage capability and transparency remains challenging. Herein, an in situ strategy employing a temporally and spatially shaped femtosecond laser is reported for photochemically synthesizing of MXene quantum dots (MQDs) uniformly attached to laser reduced graphene oxide (LRGO) with exceptional electrochemical capacitance and ultrahigh transparency. The mechanism and plasma dynamics of the synthesis process are analyzed and observed at the same time. The unique MQDs loaded on LRGO greatly improve the specific surface area of the electrode due to the nanoscale size and additional edge states. The MQD/LRGO supercapacitor has high flexibility and durability, ultrahigh energy density (2.04 × 10−3 mWh cm−2), long cycle life (97.6% after 12 000 cycles), and excellent capacitance (10.42 mF cm−2) with both high transparency (transmittance over 90%) and high performance. Furthermore, this method provides a means of preparing nanostructured composite electrode materials and exploiting quantum capacitance effects for energy storage. This work offers an in situ, one‐step strategy using temporally and spatially shapedlaser for simultaneous photochemically synthesizing of the transparent MXene quantum dot/laser reduced graphene oxide composite electrodes with ultrahigh transparency and energy storage. A new process for preparing transparent electrode is proposed, which also takes into account both high transparency and performance.
doi_str_mv 10.1002/adma.202110013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2622478091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642193451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-28a31a120a5ca2b28941cd197d896fe33ccd9f7236ffe70117c546ca6c3aa2a3</originalsourceid><addsrcrecordid>eNqFkctLAzEQh4MotlavHmXBi5dt89hXjqXVWmgRaQVvyzSb2C37Mtkg_e_N0lrBi6dhhm8-hvkhdEvwkGBMR5CVMKSYEtcRdob6JKTEDzAPz1Efcxb6PAqSHroyZocx5hGOLlGPhTimPIz76OOtaDUoMK232kIjM28BRmpvXmVWuG61r9qtNLnxauUt32UlvVcLVWtLb1q3ZjTT0Gy7qaq1t9ZQmQa0rJzNNlILaEDkba3NNbpQUBh5c6wDtH56XE-e_cXLbD4ZL3zBYsZ8mgAjQCiGUADd0IQHRGSEx1nCIyUZEyLjKqYsUkrGmJBYhEEkIBIMgAIboIeDttH1p5WmTcvcCFkUUMnampRGlAZxgjlx6P0fdFdbXbnjHBVQwlkQdtTwQAldG6OlShudl6D3KcFpl0DaJZCeEnALd0et3ZQyO-E_L3cAPwBfeSH3_-jS8XQ5_pV_AzXIkkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642193451</pqid></control><display><type>article</type><title>Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors</title><source>Wiley Journals</source><creator>Yuan, Yongjiu ; Jiang, Lan ; Li, Xin ; Zuo, Pei ; Zhang, Xueqiang ; Lian, Yiling ; Ma, Yunlong ; Liang, Misheng ; Zhao, Yang ; Qu, Liangti</creator><creatorcontrib>Yuan, Yongjiu ; Jiang, Lan ; Li, Xin ; Zuo, Pei ; Zhang, Xueqiang ; Lian, Yiling ; Ma, Yunlong ; Liang, Misheng ; Zhao, Yang ; Qu, Liangti</creatorcontrib><description>Ultratransparent electrodes have attracted considerable attention in optoelectronics and energy technology. However, balancing energy storage capability and transparency remains challenging. Herein, an in situ strategy employing a temporally and spatially shaped femtosecond laser is reported for photochemically synthesizing of MXene quantum dots (MQDs) uniformly attached to laser reduced graphene oxide (LRGO) with exceptional electrochemical capacitance and ultrahigh transparency. The mechanism and plasma dynamics of the synthesis process are analyzed and observed at the same time. The unique MQDs loaded on LRGO greatly improve the specific surface area of the electrode due to the nanoscale size and additional edge states. The MQD/LRGO supercapacitor has high flexibility and durability, ultrahigh energy density (2.04 × 10−3 mWh cm−2), long cycle life (97.6% after 12 000 cycles), and excellent capacitance (10.42 mF cm−2) with both high transparency (transmittance over 90%) and high performance. Furthermore, this method provides a means of preparing nanostructured composite electrode materials and exploiting quantum capacitance effects for energy storage. This work offers an in situ, one‐step strategy using temporally and spatially shapedlaser for simultaneous photochemically synthesizing of the transparent MXene quantum dot/laser reduced graphene oxide composite electrodes with ultrahigh transparency and energy storage. A new process for preparing transparent electrode is proposed, which also takes into account both high transparency and performance.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202110013</identifier><identifier>PMID: 35072957</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Capacitance ; Electrode materials ; Energy storage ; Energy technology ; Flux density ; Graphene ; Lasers ; Materials science ; MXenes ; Optoelectronics ; Plasma dynamics ; Quantum dots ; shaped femtosecond laser ; Supercapacitors ; Synthesis</subject><ispartof>Advanced materials (Weinheim), 2022-03, Vol.34 (12), p.e2110013-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-28a31a120a5ca2b28941cd197d896fe33ccd9f7236ffe70117c546ca6c3aa2a3</citedby><cites>FETCH-LOGICAL-c3733-28a31a120a5ca2b28941cd197d896fe33ccd9f7236ffe70117c546ca6c3aa2a3</cites><orcidid>0000-0003-0488-1987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202110013$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202110013$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35072957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Yongjiu</creatorcontrib><creatorcontrib>Jiang, Lan</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zuo, Pei</creatorcontrib><creatorcontrib>Zhang, Xueqiang</creatorcontrib><creatorcontrib>Lian, Yiling</creatorcontrib><creatorcontrib>Ma, Yunlong</creatorcontrib><creatorcontrib>Liang, Misheng</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Qu, Liangti</creatorcontrib><title>Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Ultratransparent electrodes have attracted considerable attention in optoelectronics and energy technology. However, balancing energy storage capability and transparency remains challenging. Herein, an in situ strategy employing a temporally and spatially shaped femtosecond laser is reported for photochemically synthesizing of MXene quantum dots (MQDs) uniformly attached to laser reduced graphene oxide (LRGO) with exceptional electrochemical capacitance and ultrahigh transparency. The mechanism and plasma dynamics of the synthesis process are analyzed and observed at the same time. The unique MQDs loaded on LRGO greatly improve the specific surface area of the electrode due to the nanoscale size and additional edge states. The MQD/LRGO supercapacitor has high flexibility and durability, ultrahigh energy density (2.04 × 10−3 mWh cm−2), long cycle life (97.6% after 12 000 cycles), and excellent capacitance (10.42 mF cm−2) with both high transparency (transmittance over 90%) and high performance. Furthermore, this method provides a means of preparing nanostructured composite electrode materials and exploiting quantum capacitance effects for energy storage. This work offers an in situ, one‐step strategy using temporally and spatially shapedlaser for simultaneous photochemically synthesizing of the transparent MXene quantum dot/laser reduced graphene oxide composite electrodes with ultrahigh transparency and energy storage. A new process for preparing transparent electrode is proposed, which also takes into account both high transparency and performance.</description><subject>Capacitance</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Energy technology</subject><subject>Flux density</subject><subject>Graphene</subject><subject>Lasers</subject><subject>Materials science</subject><subject>MXenes</subject><subject>Optoelectronics</subject><subject>Plasma dynamics</subject><subject>Quantum dots</subject><subject>shaped femtosecond laser</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkctLAzEQh4MotlavHmXBi5dt89hXjqXVWmgRaQVvyzSb2C37Mtkg_e_N0lrBi6dhhm8-hvkhdEvwkGBMR5CVMKSYEtcRdob6JKTEDzAPz1Efcxb6PAqSHroyZocx5hGOLlGPhTimPIz76OOtaDUoMK232kIjM28BRmpvXmVWuG61r9qtNLnxauUt32UlvVcLVWtLb1q3ZjTT0Gy7qaq1t9ZQmQa0rJzNNlILaEDkba3NNbpQUBh5c6wDtH56XE-e_cXLbD4ZL3zBYsZ8mgAjQCiGUADd0IQHRGSEx1nCIyUZEyLjKqYsUkrGmJBYhEEkIBIMgAIboIeDttH1p5WmTcvcCFkUUMnampRGlAZxgjlx6P0fdFdbXbnjHBVQwlkQdtTwQAldG6OlShudl6D3KcFpl0DaJZCeEnALd0et3ZQyO-E_L3cAPwBfeSH3_-jS8XQ5_pV_AzXIkkg</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Yuan, Yongjiu</creator><creator>Jiang, Lan</creator><creator>Li, Xin</creator><creator>Zuo, Pei</creator><creator>Zhang, Xueqiang</creator><creator>Lian, Yiling</creator><creator>Ma, Yunlong</creator><creator>Liang, Misheng</creator><creator>Zhao, Yang</creator><creator>Qu, Liangti</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0488-1987</orcidid></search><sort><creationdate>20220301</creationdate><title>Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors</title><author>Yuan, Yongjiu ; Jiang, Lan ; Li, Xin ; Zuo, Pei ; Zhang, Xueqiang ; Lian, Yiling ; Ma, Yunlong ; Liang, Misheng ; Zhao, Yang ; Qu, Liangti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-28a31a120a5ca2b28941cd197d896fe33ccd9f7236ffe70117c546ca6c3aa2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitance</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Energy technology</topic><topic>Flux density</topic><topic>Graphene</topic><topic>Lasers</topic><topic>Materials science</topic><topic>MXenes</topic><topic>Optoelectronics</topic><topic>Plasma dynamics</topic><topic>Quantum dots</topic><topic>shaped femtosecond laser</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Yongjiu</creatorcontrib><creatorcontrib>Jiang, Lan</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zuo, Pei</creatorcontrib><creatorcontrib>Zhang, Xueqiang</creatorcontrib><creatorcontrib>Lian, Yiling</creatorcontrib><creatorcontrib>Ma, Yunlong</creatorcontrib><creatorcontrib>Liang, Misheng</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Qu, Liangti</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Yongjiu</au><au>Jiang, Lan</au><au>Li, Xin</au><au>Zuo, Pei</au><au>Zhang, Xueqiang</au><au>Lian, Yiling</au><au>Ma, Yunlong</au><au>Liang, Misheng</au><au>Zhao, Yang</au><au>Qu, Liangti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>34</volume><issue>12</issue><spage>e2110013</spage><epage>n/a</epage><pages>e2110013-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Ultratransparent electrodes have attracted considerable attention in optoelectronics and energy technology. However, balancing energy storage capability and transparency remains challenging. Herein, an in situ strategy employing a temporally and spatially shaped femtosecond laser is reported for photochemically synthesizing of MXene quantum dots (MQDs) uniformly attached to laser reduced graphene oxide (LRGO) with exceptional electrochemical capacitance and ultrahigh transparency. The mechanism and plasma dynamics of the synthesis process are analyzed and observed at the same time. The unique MQDs loaded on LRGO greatly improve the specific surface area of the electrode due to the nanoscale size and additional edge states. The MQD/LRGO supercapacitor has high flexibility and durability, ultrahigh energy density (2.04 × 10−3 mWh cm−2), long cycle life (97.6% after 12 000 cycles), and excellent capacitance (10.42 mF cm−2) with both high transparency (transmittance over 90%) and high performance. Furthermore, this method provides a means of preparing nanostructured composite electrode materials and exploiting quantum capacitance effects for energy storage. This work offers an in situ, one‐step strategy using temporally and spatially shapedlaser for simultaneous photochemically synthesizing of the transparent MXene quantum dot/laser reduced graphene oxide composite electrodes with ultrahigh transparency and energy storage. A new process for preparing transparent electrode is proposed, which also takes into account both high transparency and performance.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35072957</pmid><doi>10.1002/adma.202110013</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0488-1987</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-03, Vol.34 (12), p.e2110013-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2622478091
source Wiley Journals
subjects Capacitance
Electrode materials
Energy storage
Energy technology
Flux density
Graphene
Lasers
Materials science
MXenes
Optoelectronics
Plasma dynamics
Quantum dots
shaped femtosecond laser
Supercapacitors
Synthesis
title Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Shaped%20Laser%20Induced%20Synthesis%20of%20MXene%20Quantum%20Dots/Graphene%20for%20Transparent%20Supercapacitors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yuan,%20Yongjiu&rft.date=2022-03-01&rft.volume=34&rft.issue=12&rft.spage=e2110013&rft.epage=n/a&rft.pages=e2110013-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202110013&rft_dat=%3Cproquest_cross%3E2642193451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642193451&rft_id=info:pmid/35072957&rfr_iscdi=true