An active site at work – the role of key residues in C. diphteriae coproheme decarboxylase
Coproheme decarboxylases (ChdCs) are utilized by monoderm bacteria to produce heme b by a stepwise oxidative decarboxylation of the 2- and 4-propionate groups of iron coproporphyrin III (coproheme) to vinyl groups. This work compares the effect of hemin reconstitution versus the hydrogen peroxide-me...
Gespeichert in:
Veröffentlicht in: | Journal of inorganic biochemistry 2022-04, Vol.229, p.111718-111718, Article 111718 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coproheme decarboxylases (ChdCs) are utilized by monoderm bacteria to produce heme b by a stepwise oxidative decarboxylation of the 2- and 4-propionate groups of iron coproporphyrin III (coproheme) to vinyl groups. This work compares the effect of hemin reconstitution versus the hydrogen peroxide-mediated conversion of coproheme to heme b in the actinobacterial ChdC from Corynebacterium diphtheriae (CdChdC) and selected variants. Both ferric and ferrous forms of wild-type (WT) CdChdC and its H118A, H118F, and A207E variants were characterized by resonance Raman and UV–vis spectroscopies.
The heme b ligand assumes the same conformation in the WT active site for both the reconstituted and H2O2-mediated product, maintaining the same vinyl and propionate interactions with the protein. Nevertheless, it is important to note that the distal His118, which serves as a distal base, plays an important role in the stabilization of the cavity and for the heme b reconstitution. In fact, while the access of heme b is prevented by steric hindrance in the H118F variant, the substitution of His with the small apolar Ala residue favors the insertion of the heme b in the reversed conformation. The overall data strongly support that during decarboxylation, the intermediate product, a monovinyl-monopropionyl deuteroheme, rotates by 90o within the active site. Moreover, in the ferrous forms the frequency of the ν(Fe-Nδ(His)) stretching mode provides information on the strength of the proximal Fe-His bond and allows us to follow its variation during the two oxidative decarboxylation steps.
Heme b in the reconstituted and H2O2-mediated product of wild-type maintains identical conformation and interactions. The proximal Fe-His bond strengthens during the decarboxylation. The distal His118 is important role for heme b reconstitution. The overall data strongly support that the intermediate product rotates by 90o within the active site. [Display omitted]
•Reconstituted and H2O2-mediated product of wild-type show identical heme b interactions.•The access of heme b is prevented by steric hindrance in the H118F variant.•The H118A variant shows both reversed and canonical heme b insertion.•The monovinyl-monopropionyl deuteroheme rotates by 90o within the active site.•The proximal Fe-His bond strengthens during decarboxylation. |
---|---|
ISSN: | 0162-0134 1873-3344 |
DOI: | 10.1016/j.jinorgbio.2022.111718 |