Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums

Atomically thin 2D graphene sheets exhibit unparalleled in‐plane stiffness and large out‐of‐plane elasticity, thereby providing strong mechanical resonance for nanomechanical devices. The exceptional resonance behavior of ultrathin graphene, which promises the fabrication of superior acoustic absorp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-04, Vol.34 (14), p.e2103740-n/a
Hauptverfasser: Pang, Kai, Liu, Xiaoting, Pang, Jintao, Samy, Akram, Xie, Jin, Liu, Yingjun, Peng, Li, Xu, Zhen, Gao, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page e2103740
container_title Advanced materials (Weinheim)
container_volume 34
creator Pang, Kai
Liu, Xiaoting
Pang, Jintao
Samy, Akram
Xie, Jin
Liu, Yingjun
Peng, Li
Xu, Zhen
Gao, Chao
description Atomically thin 2D graphene sheets exhibit unparalleled in‐plane stiffness and large out‐of‐plane elasticity, thereby providing strong mechanical resonance for nanomechanical devices. The exceptional resonance behavior of ultrathin graphene, which promises the fabrication of superior acoustic absorption materials, however, remains unfulfilled for the lack of applicable form and assembly methods. Here, a highly efficient acoustic absorber is presented, wherein cellular networks of ultrathin graphene membranes are constructed into polymer foams. The ultrathin graphene drums exhibit strong resonances and efficiently dissipate sound waves in a broad frequency range. A record specific noise reduction coefficient (51.3 at 30 mm) is achieved in the graphene‐based acoustic absorber, fully realizing the superior resonance properties of graphene sheets. The scalable method facilely transforms commercial polymer foams to superior acoustic absorbers with a ≈320% enhancement in average absorption coefficient across wide frequencies from 200 to 6000 Hz. The graphene acoustic absorber offers a convenient method to exploit the extraordinary resonance properties of 2D sheets, opening extensive new applications in noise protection, building design, instruments and acoustic devices. A highly efficient acoustic absorber is realized by integrating ultrathin graphene membranes into commercial polymer sponges, to fulfill the outstanding resonance properties of 2D graphene sheets in acoustic absorption and satisfy the urgent demands in acoustic absorption from noise protection, instruments to building design, and acoustic devices.
doi_str_mv 10.1002/adma.202103740
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2622281540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647617890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-a8fa7a38f0cf919b48cc30111fcc9c6045570533484bd2df5578c59d9c864073</originalsourceid><addsrcrecordid>eNqFkM1LwzAYh4MoOqdXj1Lw4qXzzVebHMs2pzDxMs8lTRNX6cdMWmT_vRmbE7x4CoHnffjxIHSDYYIByIMqGzUhQDDQlMEJGmFOcMxA8lM0Akl5LBMmLtCl9x8AIBNIztEF5ZAwLuQILZ6q93W9jebWVroybR9NTV0PtXJRprvB95WOssJ3rjAu6my0cGqzNq2J3ureqX5dtdHMDY2_QmdW1d5cH94xWj3OV9OnePm6eJ5my1jTlEKshFWposKCthLLggmtKWCMrdZSJ8A4T4FTygQrSlLa8BWay1JqkTBI6Rjd77Ub130Oxvd5U3kdFqvWhLU5SQghAnMGAb37g350g2vDuECxNMGpkDtqsqe067x3xuYbVzXKbXMM-a5wviucHwuHg9uDdigaUx7xn6QBkHvgq6rN9h9dns1esl_5N1QXhYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647617890</pqid></control><display><type>article</type><title>Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums</title><source>Wiley Online Library All Journals</source><creator>Pang, Kai ; Liu, Xiaoting ; Pang, Jintao ; Samy, Akram ; Xie, Jin ; Liu, Yingjun ; Peng, Li ; Xu, Zhen ; Gao, Chao</creator><creatorcontrib>Pang, Kai ; Liu, Xiaoting ; Pang, Jintao ; Samy, Akram ; Xie, Jin ; Liu, Yingjun ; Peng, Li ; Xu, Zhen ; Gao, Chao</creatorcontrib><description>Atomically thin 2D graphene sheets exhibit unparalleled in‐plane stiffness and large out‐of‐plane elasticity, thereby providing strong mechanical resonance for nanomechanical devices. The exceptional resonance behavior of ultrathin graphene, which promises the fabrication of superior acoustic absorption materials, however, remains unfulfilled for the lack of applicable form and assembly methods. Here, a highly efficient acoustic absorber is presented, wherein cellular networks of ultrathin graphene membranes are constructed into polymer foams. The ultrathin graphene drums exhibit strong resonances and efficiently dissipate sound waves in a broad frequency range. A record specific noise reduction coefficient (51.3 at 30 mm) is achieved in the graphene‐based acoustic absorber, fully realizing the superior resonance properties of graphene sheets. The scalable method facilely transforms commercial polymer foams to superior acoustic absorbers with a ≈320% enhancement in average absorption coefficient across wide frequencies from 200 to 6000 Hz. The graphene acoustic absorber offers a convenient method to exploit the extraordinary resonance properties of 2D sheets, opening extensive new applications in noise protection, building design, instruments and acoustic devices. A highly efficient acoustic absorber is realized by integrating ultrathin graphene membranes into commercial polymer sponges, to fulfill the outstanding resonance properties of 2D graphene sheets in acoustic absorption and satisfy the urgent demands in acoustic absorption from noise protection, instruments to building design, and acoustic devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202103740</identifier><identifier>PMID: 35064589</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorbers ; Absorptivity ; acoustic absorbers ; Acoustic absorption ; Acoustic noise ; Acoustic properties ; Acoustic resonance ; Acoustics ; Building design ; Cellular communication ; cellular materials ; Frequency ranges ; Graphene ; Materials science ; Noise reduction ; Plastic foam ; Polymers ; Resonance ; Sheets ; Sound waves ; Stiffness ; ultrathin drums</subject><ispartof>Advanced materials (Weinheim), 2022-04, Vol.34 (14), p.e2103740-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-a8fa7a38f0cf919b48cc30111fcc9c6045570533484bd2df5578c59d9c864073</citedby><cites>FETCH-LOGICAL-c3730-a8fa7a38f0cf919b48cc30111fcc9c6045570533484bd2df5578c59d9c864073</cites><orcidid>0000-0003-1352-9176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202103740$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202103740$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35064589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pang, Kai</creatorcontrib><creatorcontrib>Liu, Xiaoting</creatorcontrib><creatorcontrib>Pang, Jintao</creatorcontrib><creatorcontrib>Samy, Akram</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><creatorcontrib>Liu, Yingjun</creatorcontrib><creatorcontrib>Peng, Li</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><title>Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Atomically thin 2D graphene sheets exhibit unparalleled in‐plane stiffness and large out‐of‐plane elasticity, thereby providing strong mechanical resonance for nanomechanical devices. The exceptional resonance behavior of ultrathin graphene, which promises the fabrication of superior acoustic absorption materials, however, remains unfulfilled for the lack of applicable form and assembly methods. Here, a highly efficient acoustic absorber is presented, wherein cellular networks of ultrathin graphene membranes are constructed into polymer foams. The ultrathin graphene drums exhibit strong resonances and efficiently dissipate sound waves in a broad frequency range. A record specific noise reduction coefficient (51.3 at 30 mm) is achieved in the graphene‐based acoustic absorber, fully realizing the superior resonance properties of graphene sheets. The scalable method facilely transforms commercial polymer foams to superior acoustic absorbers with a ≈320% enhancement in average absorption coefficient across wide frequencies from 200 to 6000 Hz. The graphene acoustic absorber offers a convenient method to exploit the extraordinary resonance properties of 2D sheets, opening extensive new applications in noise protection, building design, instruments and acoustic devices. A highly efficient acoustic absorber is realized by integrating ultrathin graphene membranes into commercial polymer sponges, to fulfill the outstanding resonance properties of 2D graphene sheets in acoustic absorption and satisfy the urgent demands in acoustic absorption from noise protection, instruments to building design, and acoustic devices.</description><subject>Absorbers</subject><subject>Absorptivity</subject><subject>acoustic absorbers</subject><subject>Acoustic absorption</subject><subject>Acoustic noise</subject><subject>Acoustic properties</subject><subject>Acoustic resonance</subject><subject>Acoustics</subject><subject>Building design</subject><subject>Cellular communication</subject><subject>cellular materials</subject><subject>Frequency ranges</subject><subject>Graphene</subject><subject>Materials science</subject><subject>Noise reduction</subject><subject>Plastic foam</subject><subject>Polymers</subject><subject>Resonance</subject><subject>Sheets</subject><subject>Sound waves</subject><subject>Stiffness</subject><subject>ultrathin drums</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAYh4MoOqdXj1Lw4qXzzVebHMs2pzDxMs8lTRNX6cdMWmT_vRmbE7x4CoHnffjxIHSDYYIByIMqGzUhQDDQlMEJGmFOcMxA8lM0Akl5LBMmLtCl9x8AIBNIztEF5ZAwLuQILZ6q93W9jebWVroybR9NTV0PtXJRprvB95WOssJ3rjAu6my0cGqzNq2J3ureqX5dtdHMDY2_QmdW1d5cH94xWj3OV9OnePm6eJ5my1jTlEKshFWposKCthLLggmtKWCMrdZSJ8A4T4FTygQrSlLa8BWay1JqkTBI6Rjd77Ub130Oxvd5U3kdFqvWhLU5SQghAnMGAb37g350g2vDuECxNMGpkDtqsqe067x3xuYbVzXKbXMM-a5wviucHwuHg9uDdigaUx7xn6QBkHvgq6rN9h9dns1esl_5N1QXhYA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Pang, Kai</creator><creator>Liu, Xiaoting</creator><creator>Pang, Jintao</creator><creator>Samy, Akram</creator><creator>Xie, Jin</creator><creator>Liu, Yingjun</creator><creator>Peng, Li</creator><creator>Xu, Zhen</creator><creator>Gao, Chao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1352-9176</orcidid></search><sort><creationdate>20220401</creationdate><title>Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums</title><author>Pang, Kai ; Liu, Xiaoting ; Pang, Jintao ; Samy, Akram ; Xie, Jin ; Liu, Yingjun ; Peng, Li ; Xu, Zhen ; Gao, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-a8fa7a38f0cf919b48cc30111fcc9c6045570533484bd2df5578c59d9c864073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorbers</topic><topic>Absorptivity</topic><topic>acoustic absorbers</topic><topic>Acoustic absorption</topic><topic>Acoustic noise</topic><topic>Acoustic properties</topic><topic>Acoustic resonance</topic><topic>Acoustics</topic><topic>Building design</topic><topic>Cellular communication</topic><topic>cellular materials</topic><topic>Frequency ranges</topic><topic>Graphene</topic><topic>Materials science</topic><topic>Noise reduction</topic><topic>Plastic foam</topic><topic>Polymers</topic><topic>Resonance</topic><topic>Sheets</topic><topic>Sound waves</topic><topic>Stiffness</topic><topic>ultrathin drums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Kai</creatorcontrib><creatorcontrib>Liu, Xiaoting</creatorcontrib><creatorcontrib>Pang, Jintao</creatorcontrib><creatorcontrib>Samy, Akram</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><creatorcontrib>Liu, Yingjun</creatorcontrib><creatorcontrib>Peng, Li</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Kai</au><au>Liu, Xiaoting</au><au>Pang, Jintao</au><au>Samy, Akram</au><au>Xie, Jin</au><au>Liu, Yingjun</au><au>Peng, Li</au><au>Xu, Zhen</au><au>Gao, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>34</volume><issue>14</issue><spage>e2103740</spage><epage>n/a</epage><pages>e2103740-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Atomically thin 2D graphene sheets exhibit unparalleled in‐plane stiffness and large out‐of‐plane elasticity, thereby providing strong mechanical resonance for nanomechanical devices. The exceptional resonance behavior of ultrathin graphene, which promises the fabrication of superior acoustic absorption materials, however, remains unfulfilled for the lack of applicable form and assembly methods. Here, a highly efficient acoustic absorber is presented, wherein cellular networks of ultrathin graphene membranes are constructed into polymer foams. The ultrathin graphene drums exhibit strong resonances and efficiently dissipate sound waves in a broad frequency range. A record specific noise reduction coefficient (51.3 at 30 mm) is achieved in the graphene‐based acoustic absorber, fully realizing the superior resonance properties of graphene sheets. The scalable method facilely transforms commercial polymer foams to superior acoustic absorbers with a ≈320% enhancement in average absorption coefficient across wide frequencies from 200 to 6000 Hz. The graphene acoustic absorber offers a convenient method to exploit the extraordinary resonance properties of 2D sheets, opening extensive new applications in noise protection, building design, instruments and acoustic devices. A highly efficient acoustic absorber is realized by integrating ultrathin graphene membranes into commercial polymer sponges, to fulfill the outstanding resonance properties of 2D graphene sheets in acoustic absorption and satisfy the urgent demands in acoustic absorption from noise protection, instruments to building design, and acoustic devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35064589</pmid><doi>10.1002/adma.202103740</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1352-9176</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-04, Vol.34 (14), p.e2103740-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2622281540
source Wiley Online Library All Journals
subjects Absorbers
Absorptivity
acoustic absorbers
Acoustic absorption
Acoustic noise
Acoustic properties
Acoustic resonance
Acoustics
Building design
Cellular communication
cellular materials
Frequency ranges
Graphene
Materials science
Noise reduction
Plastic foam
Polymers
Resonance
Sheets
Sound waves
Stiffness
ultrathin drums
title Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20Cellular%20Acoustic%20Absorber%20of%20Graphene%20Ultrathin%20Drums&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Pang,%20Kai&rft.date=2022-04-01&rft.volume=34&rft.issue=14&rft.spage=e2103740&rft.epage=n/a&rft.pages=e2103740-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202103740&rft_dat=%3Cproquest_cross%3E2647617890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647617890&rft_id=info:pmid/35064589&rfr_iscdi=true