Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums
Atomically thin 2D graphene sheets exhibit unparalleled in‐plane stiffness and large out‐of‐plane elasticity, thereby providing strong mechanical resonance for nanomechanical devices. The exceptional resonance behavior of ultrathin graphene, which promises the fabrication of superior acoustic absorp...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-04, Vol.34 (14), p.e2103740-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 14 |
container_start_page | e2103740 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Pang, Kai Liu, Xiaoting Pang, Jintao Samy, Akram Xie, Jin Liu, Yingjun Peng, Li Xu, Zhen Gao, Chao |
description | Atomically thin 2D graphene sheets exhibit unparalleled in‐plane stiffness and large out‐of‐plane elasticity, thereby providing strong mechanical resonance for nanomechanical devices. The exceptional resonance behavior of ultrathin graphene, which promises the fabrication of superior acoustic absorption materials, however, remains unfulfilled for the lack of applicable form and assembly methods. Here, a highly efficient acoustic absorber is presented, wherein cellular networks of ultrathin graphene membranes are constructed into polymer foams. The ultrathin graphene drums exhibit strong resonances and efficiently dissipate sound waves in a broad frequency range. A record specific noise reduction coefficient (51.3 at 30 mm) is achieved in the graphene‐based acoustic absorber, fully realizing the superior resonance properties of graphene sheets. The scalable method facilely transforms commercial polymer foams to superior acoustic absorbers with a ≈320% enhancement in average absorption coefficient across wide frequencies from 200 to 6000 Hz. The graphene acoustic absorber offers a convenient method to exploit the extraordinary resonance properties of 2D sheets, opening extensive new applications in noise protection, building design, instruments and acoustic devices.
A highly efficient acoustic absorber is realized by integrating ultrathin graphene membranes into commercial polymer sponges, to fulfill the outstanding resonance properties of 2D graphene sheets in acoustic absorption and satisfy the urgent demands in acoustic absorption from noise protection, instruments to building design, and acoustic devices. |
doi_str_mv | 10.1002/adma.202103740 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2622281540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2647617890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-a8fa7a38f0cf919b48cc30111fcc9c6045570533484bd2df5578c59d9c864073</originalsourceid><addsrcrecordid>eNqFkM1LwzAYh4MoOqdXj1Lw4qXzzVebHMs2pzDxMs8lTRNX6cdMWmT_vRmbE7x4CoHnffjxIHSDYYIByIMqGzUhQDDQlMEJGmFOcMxA8lM0Akl5LBMmLtCl9x8AIBNIztEF5ZAwLuQILZ6q93W9jebWVroybR9NTV0PtXJRprvB95WOssJ3rjAu6my0cGqzNq2J3ureqX5dtdHMDY2_QmdW1d5cH94xWj3OV9OnePm6eJ5my1jTlEKshFWposKCthLLggmtKWCMrdZSJ8A4T4FTygQrSlLa8BWay1JqkTBI6Rjd77Ub130Oxvd5U3kdFqvWhLU5SQghAnMGAb37g350g2vDuECxNMGpkDtqsqe067x3xuYbVzXKbXMM-a5wviucHwuHg9uDdigaUx7xn6QBkHvgq6rN9h9dns1esl_5N1QXhYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647617890</pqid></control><display><type>article</type><title>Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums</title><source>Wiley Online Library All Journals</source><creator>Pang, Kai ; Liu, Xiaoting ; Pang, Jintao ; Samy, Akram ; Xie, Jin ; Liu, Yingjun ; Peng, Li ; Xu, Zhen ; Gao, Chao</creator><creatorcontrib>Pang, Kai ; Liu, Xiaoting ; Pang, Jintao ; Samy, Akram ; Xie, Jin ; Liu, Yingjun ; Peng, Li ; Xu, Zhen ; Gao, Chao</creatorcontrib><description>Atomically thin 2D graphene sheets exhibit unparalleled in‐plane stiffness and large out‐of‐plane elasticity, thereby providing strong mechanical resonance for nanomechanical devices. The exceptional resonance behavior of ultrathin graphene, which promises the fabrication of superior acoustic absorption materials, however, remains unfulfilled for the lack of applicable form and assembly methods. Here, a highly efficient acoustic absorber is presented, wherein cellular networks of ultrathin graphene membranes are constructed into polymer foams. The ultrathin graphene drums exhibit strong resonances and efficiently dissipate sound waves in a broad frequency range. A record specific noise reduction coefficient (51.3 at 30 mm) is achieved in the graphene‐based acoustic absorber, fully realizing the superior resonance properties of graphene sheets. The scalable method facilely transforms commercial polymer foams to superior acoustic absorbers with a ≈320% enhancement in average absorption coefficient across wide frequencies from 200 to 6000 Hz. The graphene acoustic absorber offers a convenient method to exploit the extraordinary resonance properties of 2D sheets, opening extensive new applications in noise protection, building design, instruments and acoustic devices.
A highly efficient acoustic absorber is realized by integrating ultrathin graphene membranes into commercial polymer sponges, to fulfill the outstanding resonance properties of 2D graphene sheets in acoustic absorption and satisfy the urgent demands in acoustic absorption from noise protection, instruments to building design, and acoustic devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202103740</identifier><identifier>PMID: 35064589</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorbers ; Absorptivity ; acoustic absorbers ; Acoustic absorption ; Acoustic noise ; Acoustic properties ; Acoustic resonance ; Acoustics ; Building design ; Cellular communication ; cellular materials ; Frequency ranges ; Graphene ; Materials science ; Noise reduction ; Plastic foam ; Polymers ; Resonance ; Sheets ; Sound waves ; Stiffness ; ultrathin drums</subject><ispartof>Advanced materials (Weinheim), 2022-04, Vol.34 (14), p.e2103740-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-a8fa7a38f0cf919b48cc30111fcc9c6045570533484bd2df5578c59d9c864073</citedby><cites>FETCH-LOGICAL-c3730-a8fa7a38f0cf919b48cc30111fcc9c6045570533484bd2df5578c59d9c864073</cites><orcidid>0000-0003-1352-9176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202103740$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202103740$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35064589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pang, Kai</creatorcontrib><creatorcontrib>Liu, Xiaoting</creatorcontrib><creatorcontrib>Pang, Jintao</creatorcontrib><creatorcontrib>Samy, Akram</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><creatorcontrib>Liu, Yingjun</creatorcontrib><creatorcontrib>Peng, Li</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><title>Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Atomically thin 2D graphene sheets exhibit unparalleled in‐plane stiffness and large out‐of‐plane elasticity, thereby providing strong mechanical resonance for nanomechanical devices. The exceptional resonance behavior of ultrathin graphene, which promises the fabrication of superior acoustic absorption materials, however, remains unfulfilled for the lack of applicable form and assembly methods. Here, a highly efficient acoustic absorber is presented, wherein cellular networks of ultrathin graphene membranes are constructed into polymer foams. The ultrathin graphene drums exhibit strong resonances and efficiently dissipate sound waves in a broad frequency range. A record specific noise reduction coefficient (51.3 at 30 mm) is achieved in the graphene‐based acoustic absorber, fully realizing the superior resonance properties of graphene sheets. The scalable method facilely transforms commercial polymer foams to superior acoustic absorbers with a ≈320% enhancement in average absorption coefficient across wide frequencies from 200 to 6000 Hz. The graphene acoustic absorber offers a convenient method to exploit the extraordinary resonance properties of 2D sheets, opening extensive new applications in noise protection, building design, instruments and acoustic devices.
A highly efficient acoustic absorber is realized by integrating ultrathin graphene membranes into commercial polymer sponges, to fulfill the outstanding resonance properties of 2D graphene sheets in acoustic absorption and satisfy the urgent demands in acoustic absorption from noise protection, instruments to building design, and acoustic devices.</description><subject>Absorbers</subject><subject>Absorptivity</subject><subject>acoustic absorbers</subject><subject>Acoustic absorption</subject><subject>Acoustic noise</subject><subject>Acoustic properties</subject><subject>Acoustic resonance</subject><subject>Acoustics</subject><subject>Building design</subject><subject>Cellular communication</subject><subject>cellular materials</subject><subject>Frequency ranges</subject><subject>Graphene</subject><subject>Materials science</subject><subject>Noise reduction</subject><subject>Plastic foam</subject><subject>Polymers</subject><subject>Resonance</subject><subject>Sheets</subject><subject>Sound waves</subject><subject>Stiffness</subject><subject>ultrathin drums</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAYh4MoOqdXj1Lw4qXzzVebHMs2pzDxMs8lTRNX6cdMWmT_vRmbE7x4CoHnffjxIHSDYYIByIMqGzUhQDDQlMEJGmFOcMxA8lM0Akl5LBMmLtCl9x8AIBNIztEF5ZAwLuQILZ6q93W9jebWVroybR9NTV0PtXJRprvB95WOssJ3rjAu6my0cGqzNq2J3ureqX5dtdHMDY2_QmdW1d5cH94xWj3OV9OnePm6eJ5my1jTlEKshFWposKCthLLggmtKWCMrdZSJ8A4T4FTygQrSlLa8BWay1JqkTBI6Rjd77Ub130Oxvd5U3kdFqvWhLU5SQghAnMGAb37g350g2vDuECxNMGpkDtqsqe067x3xuYbVzXKbXMM-a5wviucHwuHg9uDdigaUx7xn6QBkHvgq6rN9h9dns1esl_5N1QXhYA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Pang, Kai</creator><creator>Liu, Xiaoting</creator><creator>Pang, Jintao</creator><creator>Samy, Akram</creator><creator>Xie, Jin</creator><creator>Liu, Yingjun</creator><creator>Peng, Li</creator><creator>Xu, Zhen</creator><creator>Gao, Chao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1352-9176</orcidid></search><sort><creationdate>20220401</creationdate><title>Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums</title><author>Pang, Kai ; Liu, Xiaoting ; Pang, Jintao ; Samy, Akram ; Xie, Jin ; Liu, Yingjun ; Peng, Li ; Xu, Zhen ; Gao, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-a8fa7a38f0cf919b48cc30111fcc9c6045570533484bd2df5578c59d9c864073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorbers</topic><topic>Absorptivity</topic><topic>acoustic absorbers</topic><topic>Acoustic absorption</topic><topic>Acoustic noise</topic><topic>Acoustic properties</topic><topic>Acoustic resonance</topic><topic>Acoustics</topic><topic>Building design</topic><topic>Cellular communication</topic><topic>cellular materials</topic><topic>Frequency ranges</topic><topic>Graphene</topic><topic>Materials science</topic><topic>Noise reduction</topic><topic>Plastic foam</topic><topic>Polymers</topic><topic>Resonance</topic><topic>Sheets</topic><topic>Sound waves</topic><topic>Stiffness</topic><topic>ultrathin drums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Kai</creatorcontrib><creatorcontrib>Liu, Xiaoting</creatorcontrib><creatorcontrib>Pang, Jintao</creatorcontrib><creatorcontrib>Samy, Akram</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><creatorcontrib>Liu, Yingjun</creatorcontrib><creatorcontrib>Peng, Li</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Kai</au><au>Liu, Xiaoting</au><au>Pang, Jintao</au><au>Samy, Akram</au><au>Xie, Jin</au><au>Liu, Yingjun</au><au>Peng, Li</au><au>Xu, Zhen</au><au>Gao, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>34</volume><issue>14</issue><spage>e2103740</spage><epage>n/a</epage><pages>e2103740-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Atomically thin 2D graphene sheets exhibit unparalleled in‐plane stiffness and large out‐of‐plane elasticity, thereby providing strong mechanical resonance for nanomechanical devices. The exceptional resonance behavior of ultrathin graphene, which promises the fabrication of superior acoustic absorption materials, however, remains unfulfilled for the lack of applicable form and assembly methods. Here, a highly efficient acoustic absorber is presented, wherein cellular networks of ultrathin graphene membranes are constructed into polymer foams. The ultrathin graphene drums exhibit strong resonances and efficiently dissipate sound waves in a broad frequency range. A record specific noise reduction coefficient (51.3 at 30 mm) is achieved in the graphene‐based acoustic absorber, fully realizing the superior resonance properties of graphene sheets. The scalable method facilely transforms commercial polymer foams to superior acoustic absorbers with a ≈320% enhancement in average absorption coefficient across wide frequencies from 200 to 6000 Hz. The graphene acoustic absorber offers a convenient method to exploit the extraordinary resonance properties of 2D sheets, opening extensive new applications in noise protection, building design, instruments and acoustic devices.
A highly efficient acoustic absorber is realized by integrating ultrathin graphene membranes into commercial polymer sponges, to fulfill the outstanding resonance properties of 2D graphene sheets in acoustic absorption and satisfy the urgent demands in acoustic absorption from noise protection, instruments to building design, and acoustic devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35064589</pmid><doi>10.1002/adma.202103740</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1352-9176</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-04, Vol.34 (14), p.e2103740-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2622281540 |
source | Wiley Online Library All Journals |
subjects | Absorbers Absorptivity acoustic absorbers Acoustic absorption Acoustic noise Acoustic properties Acoustic resonance Acoustics Building design Cellular communication cellular materials Frequency ranges Graphene Materials science Noise reduction Plastic foam Polymers Resonance Sheets Sound waves Stiffness ultrathin drums |
title | Highly Efficient Cellular Acoustic Absorber of Graphene Ultrathin Drums |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20Cellular%20Acoustic%20Absorber%20of%20Graphene%20Ultrathin%20Drums&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Pang,%20Kai&rft.date=2022-04-01&rft.volume=34&rft.issue=14&rft.spage=e2103740&rft.epage=n/a&rft.pages=e2103740-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202103740&rft_dat=%3Cproquest_cross%3E2647617890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647617890&rft_id=info:pmid/35064589&rfr_iscdi=true |