Nanoscopic Study of Water Uptake on Glass Surfaces with Organic Thin Films and Particles from Exposure to Indoor Cooking Activities: Comparison to Model Systems

Water uptake by thin organic films and organic particles on glass substrates at 80% relative humidity was investigated using atomic force microscopy-infrared (AFM-IR) spectroscopy. Glass surfaces exposed to kitchen cooking activities show a wide variability of coverages from organic particles and or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2022-02, Vol.56 (3), p.1594-1604
Hauptverfasser: Or, Victor W, Alves, Michael R, Wade, Michael, Schwab, Sarah, Corsi, Richard L, Grassian, Vicki H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1604
container_issue 3
container_start_page 1594
container_title Environmental science & technology
container_volume 56
creator Or, Victor W
Alves, Michael R
Wade, Michael
Schwab, Sarah
Corsi, Richard L
Grassian, Vicki H
description Water uptake by thin organic films and organic particles on glass substrates at 80% relative humidity was investigated using atomic force microscopy-infrared (AFM-IR) spectroscopy. Glass surfaces exposed to kitchen cooking activities show a wide variability of coverages from organic particles and organic thin films. Water uptake, as measured by changes in the volume of the films and particles, was also quite variable. A comparison of glass surfaces exposed to kitchen activities to model systems shows that they can be largely represented by oxidized oleic acid and carboxylate groups on long and medium hydrocarbon chains (i.e., fatty acids). Overall, we demonstrate that organic particles and thin films that cover glass surfaces can take up water under indoor-relevant conditions but that the water content is not uniform. The spatial heterogeneity of the changes in these aged glass surfaces under dry (5%) and wet (80%) conditions is quite marked, highlighting the need for studies at the nano- and microscale.
doi_str_mv 10.1021/acs.est.1c06260
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2622280010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626958674</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-b16cd891dd35542a77b9efb74f93b3cd0d68436364bf96b31d5eb0b303c2c6793</originalsourceid><addsrcrecordid>eNp1kUtrFEEUhQtRzCS6dicFbgTpST26q7vdhSGJgWiESdBdU69OKumuautWG-ff-FOtYcYsBFcXLt8593IOQm8oWVLC6LHUsLSQllQTwQR5hha0YqSomoo-RwtCKC9aLr4foEOAe0II46R5iQ54RQTljVig31-kD6DD5DRep9lscOjxN5lsxDdTkg8WB4_PBwmA13PspbaAH126w1fxVvosur5zHp-5YQQsvcFfZUxOD5nqYxjx6a8pwBwtTgFfeBNCxKsQHpy_xSc6uZ8uOQsf826cZHSQb2XwczB2wOsNJDvCK_SilwPY1_t5hG7OTq9Xn4rLq_OL1cllIbmgqVBUaNO01BheVSWTda1a26u67FuuuDbEiKbkgotS9a1QnJrKKqI44ZppUbf8CL3f-U4x_Jhzpt3oQNthkN6GGTomGGNNTpRk9N0_6H2Yo8_fbSnRVo2oy0wd7ygdA0C0fTdFN8q46SjptuV1ubxuq96XlxVv976zGq154v-2lYEPO2CrfLr5P7s_pIOmdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626958674</pqid></control><display><type>article</type><title>Nanoscopic Study of Water Uptake on Glass Surfaces with Organic Thin Films and Particles from Exposure to Indoor Cooking Activities: Comparison to Model Systems</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Or, Victor W ; Alves, Michael R ; Wade, Michael ; Schwab, Sarah ; Corsi, Richard L ; Grassian, Vicki H</creator><creatorcontrib>Or, Victor W ; Alves, Michael R ; Wade, Michael ; Schwab, Sarah ; Corsi, Richard L ; Grassian, Vicki H</creatorcontrib><description>Water uptake by thin organic films and organic particles on glass substrates at 80% relative humidity was investigated using atomic force microscopy-infrared (AFM-IR) spectroscopy. Glass surfaces exposed to kitchen cooking activities show a wide variability of coverages from organic particles and organic thin films. Water uptake, as measured by changes in the volume of the films and particles, was also quite variable. A comparison of glass surfaces exposed to kitchen activities to model systems shows that they can be largely represented by oxidized oleic acid and carboxylate groups on long and medium hydrocarbon chains (i.e., fatty acids). Overall, we demonstrate that organic particles and thin films that cover glass surfaces can take up water under indoor-relevant conditions but that the water content is not uniform. The spatial heterogeneity of the changes in these aged glass surfaces under dry (5%) and wet (80%) conditions is quite marked, highlighting the need for studies at the nano- and microscale.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.1c06260</identifier><identifier>PMID: 35061386</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anthropogenic Impacts on the Atmosphere ; Atomic force microscopy ; Cooking ; Exposure ; Fatty acids ; Glass ; Glass substrates ; Heterogeneity ; Infrared spectroscopy ; Kitchens ; Microscopy, Atomic Force - methods ; Moisture content ; Molecular chains ; Oleic acid ; Relative humidity ; Spatial heterogeneity ; Spectrophotometry, Infrared ; Surface chemistry ; Thin films ; Water - chemistry ; Water content ; Water uptake</subject><ispartof>Environmental science &amp; technology, 2022-02, Vol.56 (3), p.1594-1604</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-b16cd891dd35542a77b9efb74f93b3cd0d68436364bf96b31d5eb0b303c2c6793</citedby><cites>FETCH-LOGICAL-a361t-b16cd891dd35542a77b9efb74f93b3cd0d68436364bf96b31d5eb0b303c2c6793</cites><orcidid>0000-0003-1434-5483 ; 0000-0001-5052-0045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.1c06260$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.1c06260$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35061386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Or, Victor W</creatorcontrib><creatorcontrib>Alves, Michael R</creatorcontrib><creatorcontrib>Wade, Michael</creatorcontrib><creatorcontrib>Schwab, Sarah</creatorcontrib><creatorcontrib>Corsi, Richard L</creatorcontrib><creatorcontrib>Grassian, Vicki H</creatorcontrib><title>Nanoscopic Study of Water Uptake on Glass Surfaces with Organic Thin Films and Particles from Exposure to Indoor Cooking Activities: Comparison to Model Systems</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Water uptake by thin organic films and organic particles on glass substrates at 80% relative humidity was investigated using atomic force microscopy-infrared (AFM-IR) spectroscopy. Glass surfaces exposed to kitchen cooking activities show a wide variability of coverages from organic particles and organic thin films. Water uptake, as measured by changes in the volume of the films and particles, was also quite variable. A comparison of glass surfaces exposed to kitchen activities to model systems shows that they can be largely represented by oxidized oleic acid and carboxylate groups on long and medium hydrocarbon chains (i.e., fatty acids). Overall, we demonstrate that organic particles and thin films that cover glass surfaces can take up water under indoor-relevant conditions but that the water content is not uniform. The spatial heterogeneity of the changes in these aged glass surfaces under dry (5%) and wet (80%) conditions is quite marked, highlighting the need for studies at the nano- and microscale.</description><subject>Anthropogenic Impacts on the Atmosphere</subject><subject>Atomic force microscopy</subject><subject>Cooking</subject><subject>Exposure</subject><subject>Fatty acids</subject><subject>Glass</subject><subject>Glass substrates</subject><subject>Heterogeneity</subject><subject>Infrared spectroscopy</subject><subject>Kitchens</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Moisture content</subject><subject>Molecular chains</subject><subject>Oleic acid</subject><subject>Relative humidity</subject><subject>Spatial heterogeneity</subject><subject>Spectrophotometry, Infrared</subject><subject>Surface chemistry</subject><subject>Thin films</subject><subject>Water - chemistry</subject><subject>Water content</subject><subject>Water uptake</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtrFEEUhQtRzCS6dicFbgTpST26q7vdhSGJgWiESdBdU69OKumuautWG-ff-FOtYcYsBFcXLt8593IOQm8oWVLC6LHUsLSQllQTwQR5hha0YqSomoo-RwtCKC9aLr4foEOAe0II46R5iQ54RQTljVig31-kD6DD5DRep9lscOjxN5lsxDdTkg8WB4_PBwmA13PspbaAH126w1fxVvosur5zHp-5YQQsvcFfZUxOD5nqYxjx6a8pwBwtTgFfeBNCxKsQHpy_xSc6uZ8uOQsf826cZHSQb2XwczB2wOsNJDvCK_SilwPY1_t5hG7OTq9Xn4rLq_OL1cllIbmgqVBUaNO01BheVSWTda1a26u67FuuuDbEiKbkgotS9a1QnJrKKqI44ZppUbf8CL3f-U4x_Jhzpt3oQNthkN6GGTomGGNNTpRk9N0_6H2Yo8_fbSnRVo2oy0wd7ygdA0C0fTdFN8q46SjptuV1ubxuq96XlxVv976zGq154v-2lYEPO2CrfLr5P7s_pIOmdA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Or, Victor W</creator><creator>Alves, Michael R</creator><creator>Wade, Michael</creator><creator>Schwab, Sarah</creator><creator>Corsi, Richard L</creator><creator>Grassian, Vicki H</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1434-5483</orcidid><orcidid>https://orcid.org/0000-0001-5052-0045</orcidid></search><sort><creationdate>20220201</creationdate><title>Nanoscopic Study of Water Uptake on Glass Surfaces with Organic Thin Films and Particles from Exposure to Indoor Cooking Activities: Comparison to Model Systems</title><author>Or, Victor W ; Alves, Michael R ; Wade, Michael ; Schwab, Sarah ; Corsi, Richard L ; Grassian, Vicki H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-b16cd891dd35542a77b9efb74f93b3cd0d68436364bf96b31d5eb0b303c2c6793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anthropogenic Impacts on the Atmosphere</topic><topic>Atomic force microscopy</topic><topic>Cooking</topic><topic>Exposure</topic><topic>Fatty acids</topic><topic>Glass</topic><topic>Glass substrates</topic><topic>Heterogeneity</topic><topic>Infrared spectroscopy</topic><topic>Kitchens</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Moisture content</topic><topic>Molecular chains</topic><topic>Oleic acid</topic><topic>Relative humidity</topic><topic>Spatial heterogeneity</topic><topic>Spectrophotometry, Infrared</topic><topic>Surface chemistry</topic><topic>Thin films</topic><topic>Water - chemistry</topic><topic>Water content</topic><topic>Water uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Or, Victor W</creatorcontrib><creatorcontrib>Alves, Michael R</creatorcontrib><creatorcontrib>Wade, Michael</creatorcontrib><creatorcontrib>Schwab, Sarah</creatorcontrib><creatorcontrib>Corsi, Richard L</creatorcontrib><creatorcontrib>Grassian, Vicki H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Or, Victor W</au><au>Alves, Michael R</au><au>Wade, Michael</au><au>Schwab, Sarah</au><au>Corsi, Richard L</au><au>Grassian, Vicki H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscopic Study of Water Uptake on Glass Surfaces with Organic Thin Films and Particles from Exposure to Indoor Cooking Activities: Comparison to Model Systems</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>56</volume><issue>3</issue><spage>1594</spage><epage>1604</epage><pages>1594-1604</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Water uptake by thin organic films and organic particles on glass substrates at 80% relative humidity was investigated using atomic force microscopy-infrared (AFM-IR) spectroscopy. Glass surfaces exposed to kitchen cooking activities show a wide variability of coverages from organic particles and organic thin films. Water uptake, as measured by changes in the volume of the films and particles, was also quite variable. A comparison of glass surfaces exposed to kitchen activities to model systems shows that they can be largely represented by oxidized oleic acid and carboxylate groups on long and medium hydrocarbon chains (i.e., fatty acids). Overall, we demonstrate that organic particles and thin films that cover glass surfaces can take up water under indoor-relevant conditions but that the water content is not uniform. The spatial heterogeneity of the changes in these aged glass surfaces under dry (5%) and wet (80%) conditions is quite marked, highlighting the need for studies at the nano- and microscale.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35061386</pmid><doi>10.1021/acs.est.1c06260</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1434-5483</orcidid><orcidid>https://orcid.org/0000-0001-5052-0045</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2022-02, Vol.56 (3), p.1594-1604
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2622280010
source MEDLINE; American Chemical Society Journals
subjects Anthropogenic Impacts on the Atmosphere
Atomic force microscopy
Cooking
Exposure
Fatty acids
Glass
Glass substrates
Heterogeneity
Infrared spectroscopy
Kitchens
Microscopy, Atomic Force - methods
Moisture content
Molecular chains
Oleic acid
Relative humidity
Spatial heterogeneity
Spectrophotometry, Infrared
Surface chemistry
Thin films
Water - chemistry
Water content
Water uptake
title Nanoscopic Study of Water Uptake on Glass Surfaces with Organic Thin Films and Particles from Exposure to Indoor Cooking Activities: Comparison to Model Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscopic%20Study%20of%20Water%20Uptake%20on%20Glass%20Surfaces%20with%20Organic%20Thin%20Films%20and%20Particles%20from%20Exposure%20to%20Indoor%20Cooking%20Activities:%20Comparison%20to%20Model%20Systems&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Or,%20Victor%20W&rft.date=2022-02-01&rft.volume=56&rft.issue=3&rft.spage=1594&rft.epage=1604&rft.pages=1594-1604&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.1c06260&rft_dat=%3Cproquest_cross%3E2626958674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626958674&rft_id=info:pmid/35061386&rfr_iscdi=true