Electrically Tunable Reactivity of Substrate‐Supported Cobalt Oxide Nanocrystals

First‐row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-03, Vol.18 (12), p.e2106407-n/a
Hauptverfasser: Sánchez‐Grande, Ana, Nguyën, Huu Chuong, Lauwaet, Koen, Rodríguez‐Fernández, Jonathan, Carrasco, Esther, Cirera, Borja, Sun, Zhaozong, Urgel, José Ignacio, Miranda, Rodolfo, Lauritsen, Jeppe V., Gallego, José M., López, Nuria, Écija, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page e2106407
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Sánchez‐Grande, Ana
Nguyën, Huu Chuong
Lauwaet, Koen
Rodríguez‐Fernández, Jonathan
Carrasco, Esther
Cirera, Borja
Sun, Zhaozong
Urgel, José Ignacio
Miranda, Rodolfo
Lauritsen, Jeppe V.
Gallego, José M.
López, Nuria
Écija, David
description First‐row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization and improves the design of highly efficient catalytic materials. Here, a scanning probe microscopy study complemented by density functional theory on the structural and electronic properties of CoO nanoislands grown on Au(111) is reported. Two distinct phases are observed: The most extended displays a Moiré pattern (α‐region), while the less abundant is 1Co:1Au coincidental (β‐region). As a result of the surface registry, in the β‐region the oxide adlayer is compressed by 9%, increasing the unoccupied local density of states and enhancing the selective water adsorption at low temperature through a cobalt inversion mechanism. Tip‐induced voltage pulses irreversibly transform α‐ into β‐regions, thus opening avenues to modify the structure and reactivity of transition metal oxides by external stimuli like electric fields. CoO monolayers grown on Au are dynamically rearranged under electric fields as shown by scanning tunneling microscopy experiments. Adsorption of active species is only possible on one of the two phases as seen in the images and density functional theory simulations. These results show the importance of dynamic rearrangements under electrochemical conditions particularly to establish robust structure‐activity relationships.
doi_str_mv 10.1002/smll.202106407
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2622278557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622278557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4137-75835f7980b87376bb2f569808272e3acc9212da31ddeb72e6335f58a36b1ed13</originalsourceid><addsrcrecordid>eNqF0E1LwzAYB_AgipvTq0cpePHSmZc2aY8y5gtUB9s8lyRNoSNtZ5KqvfkR_Ix-EjM2J3jx9CThlz8PfwDOERwjCPG1rbUeY4gRpBFkB2CIKCIhTXB6uD8jOAAn1q4gJAhH7BgMSOw5JXQI5lOtpDOV5Fr3wbJruNAqmCsuXfVauT5oy2DRCesMd-rr43PRrdetcaoIJq3g2gWz96pQwRNvWml667i2p-Co9EOd7eYIPN9Ol5P7MJvdPUxuslBGiLCQxQmJS5YmUCSMMCoELmPqrwlmWBEuZYoRLjhBRaGEf6LE-zjhhAqkCkRG4GqbuzbtS6esy-vKSqU1b1Tb2RxTjDFL4ph5evmHrtrONH47ryKM0oj4bUZgvFXStNYaVeZrU9Xc9DmC-abtfNN2vm_bf7jYxXaiVsWe_9TrQboFb5VW_T9x-eIxy37DvwGjVIw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642194358</pqid></control><display><type>article</type><title>Electrically Tunable Reactivity of Substrate‐Supported Cobalt Oxide Nanocrystals</title><source>Access via Wiley Online Library</source><creator>Sánchez‐Grande, Ana ; Nguyën, Huu Chuong ; Lauwaet, Koen ; Rodríguez‐Fernández, Jonathan ; Carrasco, Esther ; Cirera, Borja ; Sun, Zhaozong ; Urgel, José Ignacio ; Miranda, Rodolfo ; Lauritsen, Jeppe V. ; Gallego, José M. ; López, Nuria ; Écija, David</creator><creatorcontrib>Sánchez‐Grande, Ana ; Nguyën, Huu Chuong ; Lauwaet, Koen ; Rodríguez‐Fernández, Jonathan ; Carrasco, Esther ; Cirera, Borja ; Sun, Zhaozong ; Urgel, José Ignacio ; Miranda, Rodolfo ; Lauritsen, Jeppe V. ; Gallego, José M. ; López, Nuria ; Écija, David</creatorcontrib><description>First‐row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization and improves the design of highly efficient catalytic materials. Here, a scanning probe microscopy study complemented by density functional theory on the structural and electronic properties of CoO nanoislands grown on Au(111) is reported. Two distinct phases are observed: The most extended displays a Moiré pattern (α‐region), while the less abundant is 1Co:1Au coincidental (β‐region). As a result of the surface registry, in the β‐region the oxide adlayer is compressed by 9%, increasing the unoccupied local density of states and enhancing the selective water adsorption at low temperature through a cobalt inversion mechanism. Tip‐induced voltage pulses irreversibly transform α‐ into β‐regions, thus opening avenues to modify the structure and reactivity of transition metal oxides by external stimuli like electric fields. CoO monolayers grown on Au are dynamically rearranged under electric fields as shown by scanning tunneling microscopy experiments. Adsorption of active species is only possible on one of the two phases as seen in the images and density functional theory simulations. These results show the importance of dynamic rearrangements under electrochemical conditions particularly to establish robust structure‐activity relationships.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202106407</identifier><identifier>PMID: 35064636</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorbed water ; Adsorption ; cobalt ; Cobalt oxides ; Density functional theory ; dynamic structural changes ; Electric fields ; Induced voltage ; Low temperature ; Metal oxides ; Moire patterns ; Nanocrystals ; Nanotechnology ; oxide ; oxygen evolution reaction ; Oxygen evolution reactions ; Reactivity ; Scanning probe microscopy ; scanning tunneling microscopy ; Substrates ; Surface chemistry ; Transition metal oxides ; Voltage pulses</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-03, Vol.18 (12), p.e2106407-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4137-75835f7980b87376bb2f569808272e3acc9212da31ddeb72e6335f58a36b1ed13</citedby><cites>FETCH-LOGICAL-c4137-75835f7980b87376bb2f569808272e3acc9212da31ddeb72e6335f58a36b1ed13</cites><orcidid>0000-0001-9150-5941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202106407$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202106407$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35064636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sánchez‐Grande, Ana</creatorcontrib><creatorcontrib>Nguyën, Huu Chuong</creatorcontrib><creatorcontrib>Lauwaet, Koen</creatorcontrib><creatorcontrib>Rodríguez‐Fernández, Jonathan</creatorcontrib><creatorcontrib>Carrasco, Esther</creatorcontrib><creatorcontrib>Cirera, Borja</creatorcontrib><creatorcontrib>Sun, Zhaozong</creatorcontrib><creatorcontrib>Urgel, José Ignacio</creatorcontrib><creatorcontrib>Miranda, Rodolfo</creatorcontrib><creatorcontrib>Lauritsen, Jeppe V.</creatorcontrib><creatorcontrib>Gallego, José M.</creatorcontrib><creatorcontrib>López, Nuria</creatorcontrib><creatorcontrib>Écija, David</creatorcontrib><title>Electrically Tunable Reactivity of Substrate‐Supported Cobalt Oxide Nanocrystals</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>First‐row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization and improves the design of highly efficient catalytic materials. Here, a scanning probe microscopy study complemented by density functional theory on the structural and electronic properties of CoO nanoislands grown on Au(111) is reported. Two distinct phases are observed: The most extended displays a Moiré pattern (α‐region), while the less abundant is 1Co:1Au coincidental (β‐region). As a result of the surface registry, in the β‐region the oxide adlayer is compressed by 9%, increasing the unoccupied local density of states and enhancing the selective water adsorption at low temperature through a cobalt inversion mechanism. Tip‐induced voltage pulses irreversibly transform α‐ into β‐regions, thus opening avenues to modify the structure and reactivity of transition metal oxides by external stimuli like electric fields. CoO monolayers grown on Au are dynamically rearranged under electric fields as shown by scanning tunneling microscopy experiments. Adsorption of active species is only possible on one of the two phases as seen in the images and density functional theory simulations. These results show the importance of dynamic rearrangements under electrochemical conditions particularly to establish robust structure‐activity relationships.</description><subject>Adsorbed water</subject><subject>Adsorption</subject><subject>cobalt</subject><subject>Cobalt oxides</subject><subject>Density functional theory</subject><subject>dynamic structural changes</subject><subject>Electric fields</subject><subject>Induced voltage</subject><subject>Low temperature</subject><subject>Metal oxides</subject><subject>Moire patterns</subject><subject>Nanocrystals</subject><subject>Nanotechnology</subject><subject>oxide</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Reactivity</subject><subject>Scanning probe microscopy</subject><subject>scanning tunneling microscopy</subject><subject>Substrates</subject><subject>Surface chemistry</subject><subject>Transition metal oxides</subject><subject>Voltage pulses</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LwzAYB_AgipvTq0cpePHSmZc2aY8y5gtUB9s8lyRNoSNtZ5KqvfkR_Ix-EjM2J3jx9CThlz8PfwDOERwjCPG1rbUeY4gRpBFkB2CIKCIhTXB6uD8jOAAn1q4gJAhH7BgMSOw5JXQI5lOtpDOV5Fr3wbJruNAqmCsuXfVauT5oy2DRCesMd-rr43PRrdetcaoIJq3g2gWz96pQwRNvWml667i2p-Co9EOd7eYIPN9Ol5P7MJvdPUxuslBGiLCQxQmJS5YmUCSMMCoELmPqrwlmWBEuZYoRLjhBRaGEf6LE-zjhhAqkCkRG4GqbuzbtS6esy-vKSqU1b1Tb2RxTjDFL4ph5evmHrtrONH47ryKM0oj4bUZgvFXStNYaVeZrU9Xc9DmC-abtfNN2vm_bf7jYxXaiVsWe_9TrQboFb5VW_T9x-eIxy37DvwGjVIw8</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Sánchez‐Grande, Ana</creator><creator>Nguyën, Huu Chuong</creator><creator>Lauwaet, Koen</creator><creator>Rodríguez‐Fernández, Jonathan</creator><creator>Carrasco, Esther</creator><creator>Cirera, Borja</creator><creator>Sun, Zhaozong</creator><creator>Urgel, José Ignacio</creator><creator>Miranda, Rodolfo</creator><creator>Lauritsen, Jeppe V.</creator><creator>Gallego, José M.</creator><creator>López, Nuria</creator><creator>Écija, David</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9150-5941</orcidid></search><sort><creationdate>20220301</creationdate><title>Electrically Tunable Reactivity of Substrate‐Supported Cobalt Oxide Nanocrystals</title><author>Sánchez‐Grande, Ana ; Nguyën, Huu Chuong ; Lauwaet, Koen ; Rodríguez‐Fernández, Jonathan ; Carrasco, Esther ; Cirera, Borja ; Sun, Zhaozong ; Urgel, José Ignacio ; Miranda, Rodolfo ; Lauritsen, Jeppe V. ; Gallego, José M. ; López, Nuria ; Écija, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4137-75835f7980b87376bb2f569808272e3acc9212da31ddeb72e6335f58a36b1ed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorbed water</topic><topic>Adsorption</topic><topic>cobalt</topic><topic>Cobalt oxides</topic><topic>Density functional theory</topic><topic>dynamic structural changes</topic><topic>Electric fields</topic><topic>Induced voltage</topic><topic>Low temperature</topic><topic>Metal oxides</topic><topic>Moire patterns</topic><topic>Nanocrystals</topic><topic>Nanotechnology</topic><topic>oxide</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Reactivity</topic><topic>Scanning probe microscopy</topic><topic>scanning tunneling microscopy</topic><topic>Substrates</topic><topic>Surface chemistry</topic><topic>Transition metal oxides</topic><topic>Voltage pulses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez‐Grande, Ana</creatorcontrib><creatorcontrib>Nguyën, Huu Chuong</creatorcontrib><creatorcontrib>Lauwaet, Koen</creatorcontrib><creatorcontrib>Rodríguez‐Fernández, Jonathan</creatorcontrib><creatorcontrib>Carrasco, Esther</creatorcontrib><creatorcontrib>Cirera, Borja</creatorcontrib><creatorcontrib>Sun, Zhaozong</creatorcontrib><creatorcontrib>Urgel, José Ignacio</creatorcontrib><creatorcontrib>Miranda, Rodolfo</creatorcontrib><creatorcontrib>Lauritsen, Jeppe V.</creatorcontrib><creatorcontrib>Gallego, José M.</creatorcontrib><creatorcontrib>López, Nuria</creatorcontrib><creatorcontrib>Écija, David</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez‐Grande, Ana</au><au>Nguyën, Huu Chuong</au><au>Lauwaet, Koen</au><au>Rodríguez‐Fernández, Jonathan</au><au>Carrasco, Esther</au><au>Cirera, Borja</au><au>Sun, Zhaozong</au><au>Urgel, José Ignacio</au><au>Miranda, Rodolfo</au><au>Lauritsen, Jeppe V.</au><au>Gallego, José M.</au><au>López, Nuria</au><au>Écija, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrically Tunable Reactivity of Substrate‐Supported Cobalt Oxide Nanocrystals</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>18</volume><issue>12</issue><spage>e2106407</spage><epage>n/a</epage><pages>e2106407-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>First‐row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization and improves the design of highly efficient catalytic materials. Here, a scanning probe microscopy study complemented by density functional theory on the structural and electronic properties of CoO nanoislands grown on Au(111) is reported. Two distinct phases are observed: The most extended displays a Moiré pattern (α‐region), while the less abundant is 1Co:1Au coincidental (β‐region). As a result of the surface registry, in the β‐region the oxide adlayer is compressed by 9%, increasing the unoccupied local density of states and enhancing the selective water adsorption at low temperature through a cobalt inversion mechanism. Tip‐induced voltage pulses irreversibly transform α‐ into β‐regions, thus opening avenues to modify the structure and reactivity of transition metal oxides by external stimuli like electric fields. CoO monolayers grown on Au are dynamically rearranged under electric fields as shown by scanning tunneling microscopy experiments. Adsorption of active species is only possible on one of the two phases as seen in the images and density functional theory simulations. These results show the importance of dynamic rearrangements under electrochemical conditions particularly to establish robust structure‐activity relationships.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35064636</pmid><doi>10.1002/smll.202106407</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9150-5941</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-03, Vol.18 (12), p.e2106407-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2622278557
source Access via Wiley Online Library
subjects Adsorbed water
Adsorption
cobalt
Cobalt oxides
Density functional theory
dynamic structural changes
Electric fields
Induced voltage
Low temperature
Metal oxides
Moire patterns
Nanocrystals
Nanotechnology
oxide
oxygen evolution reaction
Oxygen evolution reactions
Reactivity
Scanning probe microscopy
scanning tunneling microscopy
Substrates
Surface chemistry
Transition metal oxides
Voltage pulses
title Electrically Tunable Reactivity of Substrate‐Supported Cobalt Oxide Nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrically%20Tunable%20Reactivity%20of%20Substrate%E2%80%90Supported%20Cobalt%20Oxide%20Nanocrystals&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=S%C3%A1nchez%E2%80%90Grande,%20Ana&rft.date=2022-03-01&rft.volume=18&rft.issue=12&rft.spage=e2106407&rft.epage=n/a&rft.pages=e2106407-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202106407&rft_dat=%3Cproquest_cross%3E2622278557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642194358&rft_id=info:pmid/35064636&rfr_iscdi=true