Electrically Tunable Reactivity of Substrate‐Supported Cobalt Oxide Nanocrystals
First‐row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization an...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-03, Vol.18 (12), p.e2106407-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | e2106407 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Sánchez‐Grande, Ana Nguyën, Huu Chuong Lauwaet, Koen Rodríguez‐Fernández, Jonathan Carrasco, Esther Cirera, Borja Sun, Zhaozong Urgel, José Ignacio Miranda, Rodolfo Lauritsen, Jeppe V. Gallego, José M. López, Nuria Écija, David |
description | First‐row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization and improves the design of highly efficient catalytic materials. Here, a scanning probe microscopy study complemented by density functional theory on the structural and electronic properties of CoO nanoislands grown on Au(111) is reported. Two distinct phases are observed: The most extended displays a Moiré pattern (α‐region), while the less abundant is 1Co:1Au coincidental (β‐region). As a result of the surface registry, in the β‐region the oxide adlayer is compressed by 9%, increasing the unoccupied local density of states and enhancing the selective water adsorption at low temperature through a cobalt inversion mechanism. Tip‐induced voltage pulses irreversibly transform α‐ into β‐regions, thus opening avenues to modify the structure and reactivity of transition metal oxides by external stimuli like electric fields.
CoO monolayers grown on Au are dynamically rearranged under electric fields as shown by scanning tunneling microscopy experiments. Adsorption of active species is only possible on one of the two phases as seen in the images and density functional theory simulations. These results show the importance of dynamic rearrangements under electrochemical conditions particularly to establish robust structure‐activity relationships. |
doi_str_mv | 10.1002/smll.202106407 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2622278557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622278557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4137-75835f7980b87376bb2f569808272e3acc9212da31ddeb72e6335f58a36b1ed13</originalsourceid><addsrcrecordid>eNqF0E1LwzAYB_AgipvTq0cpePHSmZc2aY8y5gtUB9s8lyRNoSNtZ5KqvfkR_Ix-EjM2J3jx9CThlz8PfwDOERwjCPG1rbUeY4gRpBFkB2CIKCIhTXB6uD8jOAAn1q4gJAhH7BgMSOw5JXQI5lOtpDOV5Fr3wbJruNAqmCsuXfVauT5oy2DRCesMd-rr43PRrdetcaoIJq3g2gWz96pQwRNvWml667i2p-Co9EOd7eYIPN9Ol5P7MJvdPUxuslBGiLCQxQmJS5YmUCSMMCoELmPqrwlmWBEuZYoRLjhBRaGEf6LE-zjhhAqkCkRG4GqbuzbtS6esy-vKSqU1b1Tb2RxTjDFL4ph5evmHrtrONH47ryKM0oj4bUZgvFXStNYaVeZrU9Xc9DmC-abtfNN2vm_bf7jYxXaiVsWe_9TrQboFb5VW_T9x-eIxy37DvwGjVIw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642194358</pqid></control><display><type>article</type><title>Electrically Tunable Reactivity of Substrate‐Supported Cobalt Oxide Nanocrystals</title><source>Access via Wiley Online Library</source><creator>Sánchez‐Grande, Ana ; Nguyën, Huu Chuong ; Lauwaet, Koen ; Rodríguez‐Fernández, Jonathan ; Carrasco, Esther ; Cirera, Borja ; Sun, Zhaozong ; Urgel, José Ignacio ; Miranda, Rodolfo ; Lauritsen, Jeppe V. ; Gallego, José M. ; López, Nuria ; Écija, David</creator><creatorcontrib>Sánchez‐Grande, Ana ; Nguyën, Huu Chuong ; Lauwaet, Koen ; Rodríguez‐Fernández, Jonathan ; Carrasco, Esther ; Cirera, Borja ; Sun, Zhaozong ; Urgel, José Ignacio ; Miranda, Rodolfo ; Lauritsen, Jeppe V. ; Gallego, José M. ; López, Nuria ; Écija, David</creatorcontrib><description>First‐row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization and improves the design of highly efficient catalytic materials. Here, a scanning probe microscopy study complemented by density functional theory on the structural and electronic properties of CoO nanoislands grown on Au(111) is reported. Two distinct phases are observed: The most extended displays a Moiré pattern (α‐region), while the less abundant is 1Co:1Au coincidental (β‐region). As a result of the surface registry, in the β‐region the oxide adlayer is compressed by 9%, increasing the unoccupied local density of states and enhancing the selective water adsorption at low temperature through a cobalt inversion mechanism. Tip‐induced voltage pulses irreversibly transform α‐ into β‐regions, thus opening avenues to modify the structure and reactivity of transition metal oxides by external stimuli like electric fields.
CoO monolayers grown on Au are dynamically rearranged under electric fields as shown by scanning tunneling microscopy experiments. Adsorption of active species is only possible on one of the two phases as seen in the images and density functional theory simulations. These results show the importance of dynamic rearrangements under electrochemical conditions particularly to establish robust structure‐activity relationships.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202106407</identifier><identifier>PMID: 35064636</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorbed water ; Adsorption ; cobalt ; Cobalt oxides ; Density functional theory ; dynamic structural changes ; Electric fields ; Induced voltage ; Low temperature ; Metal oxides ; Moire patterns ; Nanocrystals ; Nanotechnology ; oxide ; oxygen evolution reaction ; Oxygen evolution reactions ; Reactivity ; Scanning probe microscopy ; scanning tunneling microscopy ; Substrates ; Surface chemistry ; Transition metal oxides ; Voltage pulses</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-03, Vol.18 (12), p.e2106407-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4137-75835f7980b87376bb2f569808272e3acc9212da31ddeb72e6335f58a36b1ed13</citedby><cites>FETCH-LOGICAL-c4137-75835f7980b87376bb2f569808272e3acc9212da31ddeb72e6335f58a36b1ed13</cites><orcidid>0000-0001-9150-5941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202106407$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202106407$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35064636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sánchez‐Grande, Ana</creatorcontrib><creatorcontrib>Nguyën, Huu Chuong</creatorcontrib><creatorcontrib>Lauwaet, Koen</creatorcontrib><creatorcontrib>Rodríguez‐Fernández, Jonathan</creatorcontrib><creatorcontrib>Carrasco, Esther</creatorcontrib><creatorcontrib>Cirera, Borja</creatorcontrib><creatorcontrib>Sun, Zhaozong</creatorcontrib><creatorcontrib>Urgel, José Ignacio</creatorcontrib><creatorcontrib>Miranda, Rodolfo</creatorcontrib><creatorcontrib>Lauritsen, Jeppe V.</creatorcontrib><creatorcontrib>Gallego, José M.</creatorcontrib><creatorcontrib>López, Nuria</creatorcontrib><creatorcontrib>Écija, David</creatorcontrib><title>Electrically Tunable Reactivity of Substrate‐Supported Cobalt Oxide Nanocrystals</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>First‐row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization and improves the design of highly efficient catalytic materials. Here, a scanning probe microscopy study complemented by density functional theory on the structural and electronic properties of CoO nanoislands grown on Au(111) is reported. Two distinct phases are observed: The most extended displays a Moiré pattern (α‐region), while the less abundant is 1Co:1Au coincidental (β‐region). As a result of the surface registry, in the β‐region the oxide adlayer is compressed by 9%, increasing the unoccupied local density of states and enhancing the selective water adsorption at low temperature through a cobalt inversion mechanism. Tip‐induced voltage pulses irreversibly transform α‐ into β‐regions, thus opening avenues to modify the structure and reactivity of transition metal oxides by external stimuli like electric fields.
CoO monolayers grown on Au are dynamically rearranged under electric fields as shown by scanning tunneling microscopy experiments. Adsorption of active species is only possible on one of the two phases as seen in the images and density functional theory simulations. These results show the importance of dynamic rearrangements under electrochemical conditions particularly to establish robust structure‐activity relationships.</description><subject>Adsorbed water</subject><subject>Adsorption</subject><subject>cobalt</subject><subject>Cobalt oxides</subject><subject>Density functional theory</subject><subject>dynamic structural changes</subject><subject>Electric fields</subject><subject>Induced voltage</subject><subject>Low temperature</subject><subject>Metal oxides</subject><subject>Moire patterns</subject><subject>Nanocrystals</subject><subject>Nanotechnology</subject><subject>oxide</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Reactivity</subject><subject>Scanning probe microscopy</subject><subject>scanning tunneling microscopy</subject><subject>Substrates</subject><subject>Surface chemistry</subject><subject>Transition metal oxides</subject><subject>Voltage pulses</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LwzAYB_AgipvTq0cpePHSmZc2aY8y5gtUB9s8lyRNoSNtZ5KqvfkR_Ix-EjM2J3jx9CThlz8PfwDOERwjCPG1rbUeY4gRpBFkB2CIKCIhTXB6uD8jOAAn1q4gJAhH7BgMSOw5JXQI5lOtpDOV5Fr3wbJruNAqmCsuXfVauT5oy2DRCesMd-rr43PRrdetcaoIJq3g2gWz96pQwRNvWml667i2p-Co9EOd7eYIPN9Ol5P7MJvdPUxuslBGiLCQxQmJS5YmUCSMMCoELmPqrwlmWBEuZYoRLjhBRaGEf6LE-zjhhAqkCkRG4GqbuzbtS6esy-vKSqU1b1Tb2RxTjDFL4ph5evmHrtrONH47ryKM0oj4bUZgvFXStNYaVeZrU9Xc9DmC-abtfNN2vm_bf7jYxXaiVsWe_9TrQboFb5VW_T9x-eIxy37DvwGjVIw8</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Sánchez‐Grande, Ana</creator><creator>Nguyën, Huu Chuong</creator><creator>Lauwaet, Koen</creator><creator>Rodríguez‐Fernández, Jonathan</creator><creator>Carrasco, Esther</creator><creator>Cirera, Borja</creator><creator>Sun, Zhaozong</creator><creator>Urgel, José Ignacio</creator><creator>Miranda, Rodolfo</creator><creator>Lauritsen, Jeppe V.</creator><creator>Gallego, José M.</creator><creator>López, Nuria</creator><creator>Écija, David</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9150-5941</orcidid></search><sort><creationdate>20220301</creationdate><title>Electrically Tunable Reactivity of Substrate‐Supported Cobalt Oxide Nanocrystals</title><author>Sánchez‐Grande, Ana ; Nguyën, Huu Chuong ; Lauwaet, Koen ; Rodríguez‐Fernández, Jonathan ; Carrasco, Esther ; Cirera, Borja ; Sun, Zhaozong ; Urgel, José Ignacio ; Miranda, Rodolfo ; Lauritsen, Jeppe V. ; Gallego, José M. ; López, Nuria ; Écija, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4137-75835f7980b87376bb2f569808272e3acc9212da31ddeb72e6335f58a36b1ed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorbed water</topic><topic>Adsorption</topic><topic>cobalt</topic><topic>Cobalt oxides</topic><topic>Density functional theory</topic><topic>dynamic structural changes</topic><topic>Electric fields</topic><topic>Induced voltage</topic><topic>Low temperature</topic><topic>Metal oxides</topic><topic>Moire patterns</topic><topic>Nanocrystals</topic><topic>Nanotechnology</topic><topic>oxide</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Reactivity</topic><topic>Scanning probe microscopy</topic><topic>scanning tunneling microscopy</topic><topic>Substrates</topic><topic>Surface chemistry</topic><topic>Transition metal oxides</topic><topic>Voltage pulses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez‐Grande, Ana</creatorcontrib><creatorcontrib>Nguyën, Huu Chuong</creatorcontrib><creatorcontrib>Lauwaet, Koen</creatorcontrib><creatorcontrib>Rodríguez‐Fernández, Jonathan</creatorcontrib><creatorcontrib>Carrasco, Esther</creatorcontrib><creatorcontrib>Cirera, Borja</creatorcontrib><creatorcontrib>Sun, Zhaozong</creatorcontrib><creatorcontrib>Urgel, José Ignacio</creatorcontrib><creatorcontrib>Miranda, Rodolfo</creatorcontrib><creatorcontrib>Lauritsen, Jeppe V.</creatorcontrib><creatorcontrib>Gallego, José M.</creatorcontrib><creatorcontrib>López, Nuria</creatorcontrib><creatorcontrib>Écija, David</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez‐Grande, Ana</au><au>Nguyën, Huu Chuong</au><au>Lauwaet, Koen</au><au>Rodríguez‐Fernández, Jonathan</au><au>Carrasco, Esther</au><au>Cirera, Borja</au><au>Sun, Zhaozong</au><au>Urgel, José Ignacio</au><au>Miranda, Rodolfo</au><au>Lauritsen, Jeppe V.</au><au>Gallego, José M.</au><au>López, Nuria</au><au>Écija, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrically Tunable Reactivity of Substrate‐Supported Cobalt Oxide Nanocrystals</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>18</volume><issue>12</issue><spage>e2106407</spage><epage>n/a</epage><pages>e2106407-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>First‐row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization and improves the design of highly efficient catalytic materials. Here, a scanning probe microscopy study complemented by density functional theory on the structural and electronic properties of CoO nanoislands grown on Au(111) is reported. Two distinct phases are observed: The most extended displays a Moiré pattern (α‐region), while the less abundant is 1Co:1Au coincidental (β‐region). As a result of the surface registry, in the β‐region the oxide adlayer is compressed by 9%, increasing the unoccupied local density of states and enhancing the selective water adsorption at low temperature through a cobalt inversion mechanism. Tip‐induced voltage pulses irreversibly transform α‐ into β‐regions, thus opening avenues to modify the structure and reactivity of transition metal oxides by external stimuli like electric fields.
CoO monolayers grown on Au are dynamically rearranged under electric fields as shown by scanning tunneling microscopy experiments. Adsorption of active species is only possible on one of the two phases as seen in the images and density functional theory simulations. These results show the importance of dynamic rearrangements under electrochemical conditions particularly to establish robust structure‐activity relationships.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35064636</pmid><doi>10.1002/smll.202106407</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9150-5941</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-03, Vol.18 (12), p.e2106407-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2622278557 |
source | Access via Wiley Online Library |
subjects | Adsorbed water Adsorption cobalt Cobalt oxides Density functional theory dynamic structural changes Electric fields Induced voltage Low temperature Metal oxides Moire patterns Nanocrystals Nanotechnology oxide oxygen evolution reaction Oxygen evolution reactions Reactivity Scanning probe microscopy scanning tunneling microscopy Substrates Surface chemistry Transition metal oxides Voltage pulses |
title | Electrically Tunable Reactivity of Substrate‐Supported Cobalt Oxide Nanocrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrically%20Tunable%20Reactivity%20of%20Substrate%E2%80%90Supported%20Cobalt%20Oxide%20Nanocrystals&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=S%C3%A1nchez%E2%80%90Grande,%20Ana&rft.date=2022-03-01&rft.volume=18&rft.issue=12&rft.spage=e2106407&rft.epage=n/a&rft.pages=e2106407-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202106407&rft_dat=%3Cproquest_cross%3E2622278557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2642194358&rft_id=info:pmid/35064636&rfr_iscdi=true |