Supramolecular Network Structured Gel Polymer Electrolyte with High Ionic Conductivity for Lithium Metal Batteries
Polymer‐based solid electrolytes (PSEs) offer great promise in developing lithium metal batteries due to their attractive features such as safety, light weight, low cost, and high processability. However, a PSE‐based lithium battery usually requires a relatively high temperature (60 °C or above) to...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-10, Vol.18 (43), p.e2106352-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 43 |
container_start_page | e2106352 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Chen, Fei Guo, Changxiang Zhou, Honghao Shahzad, Muhammad Wakil Liu, Terence Xiaoteng Oleksandr, Sokolskyi Sun, Jining Dai, Sheng Xu, Ben Bin |
description | Polymer‐based solid electrolytes (PSEs) offer great promise in developing lithium metal batteries due to their attractive features such as safety, light weight, low cost, and high processability. However, a PSE‐based lithium battery usually requires a relatively high temperature (60 °C or above) to complete charge and discharge due to the poor ionic conductivity of PSEs. Herein, a gel polymer electrolytes (GPEs) film with a supramolecular network structure through a facile one‐step photopolymerization is designed and developed. The crosslinked structure and quadruple hydrogen bonding fulfil the GPEs with high thermal stability and good mechanical property with a maximum tensile strain of 48%. The obtained GPEs possess a high ionic conductivity of 3.8 × 10−3 S cm−1 at 25 °C and a decomposition voltage ≥ 4.6 V (vs Li/Li+). The cells assembled with LiFePO4 cathode and Li anode, present an initial discharge specific capacity of 155.6 mAh g−1 and a good cycling efficiency with a capacity retention rate of 81.1% after 100 charges/discharge cycles at 0.1 C at ambient temperature. This work encompasses a route to develop high performance PSEs that can be operated at room temperature for future lithium metal batteries.
Gel polymer electrolytes (GPEs) with a supramolecular network structure have a high ionic conductivity (3.8 × 10−3 S cm−1 at 25 °C). In addition, the GPEs has good mechanical properties and can reach a stretch rate of 48%. Lithium metal batteries are capable of high capacity cycling at room temperature. |
doi_str_mv | 10.1002/smll.202106352 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2622275916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728372128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4132-360dc1ab35499dd1f7c948f171c649005c7e035424d76c9689f9901f1c99fcdd3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoiVw5Ygsceklqcfe9cZHiEpbaQtIgbO1tWepizcO_iDKv8dVSpB64TIfmmdejeYl5C2wBTDGz9Pk_YIzDkyKlj8jpyBBzOWSq-fHGtgJeZXSPWMCeNO9JCeiZZJx1Z6SuC7bOEzBoyl-iPQz5l2IP-k6x2JyiWjpJXr6Nfj9hJFeVC7H2mSkO5fv6JX7cUevw8YZugobW3fcb5f3dAyR9hVwZaI3mAdPPw45Y3SYXpMX4-ATvnnMM_L908W31dW8_3J5vfrQz00Dgs-FZNbAcCvaRilrYeyMapYjdGBkoxhrTYesDnljO2mUXKpRKQYjGKVGY62YkbOD7jaGXwVT1pNLBr0fNhhK0lxyzrtWgazo-yfofShxU6_TvONL0XGocUYWB8rEkFLEUW-jm4a418D0gxv6wQ19dKMuvHuULbcT2iP-9_0VUAdg5zzu_yOn1zd9_0_8D-ialxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728372128</pqid></control><display><type>article</type><title>Supramolecular Network Structured Gel Polymer Electrolyte with High Ionic Conductivity for Lithium Metal Batteries</title><source>Access via Wiley Online Library</source><creator>Chen, Fei ; Guo, Changxiang ; Zhou, Honghao ; Shahzad, Muhammad Wakil ; Liu, Terence Xiaoteng ; Oleksandr, Sokolskyi ; Sun, Jining ; Dai, Sheng ; Xu, Ben Bin</creator><creatorcontrib>Chen, Fei ; Guo, Changxiang ; Zhou, Honghao ; Shahzad, Muhammad Wakil ; Liu, Terence Xiaoteng ; Oleksandr, Sokolskyi ; Sun, Jining ; Dai, Sheng ; Xu, Ben Bin</creatorcontrib><description>Polymer‐based solid electrolytes (PSEs) offer great promise in developing lithium metal batteries due to their attractive features such as safety, light weight, low cost, and high processability. However, a PSE‐based lithium battery usually requires a relatively high temperature (60 °C or above) to complete charge and discharge due to the poor ionic conductivity of PSEs. Herein, a gel polymer electrolytes (GPEs) film with a supramolecular network structure through a facile one‐step photopolymerization is designed and developed. The crosslinked structure and quadruple hydrogen bonding fulfil the GPEs with high thermal stability and good mechanical property with a maximum tensile strain of 48%. The obtained GPEs possess a high ionic conductivity of 3.8 × 10−3 S cm−1 at 25 °C and a decomposition voltage ≥ 4.6 V (vs Li/Li+). The cells assembled with LiFePO4 cathode and Li anode, present an initial discharge specific capacity of 155.6 mAh g−1 and a good cycling efficiency with a capacity retention rate of 81.1% after 100 charges/discharge cycles at 0.1 C at ambient temperature. This work encompasses a route to develop high performance PSEs that can be operated at room temperature for future lithium metal batteries.
Gel polymer electrolytes (GPEs) with a supramolecular network structure have a high ionic conductivity (3.8 × 10−3 S cm−1 at 25 °C). In addition, the GPEs has good mechanical properties and can reach a stretch rate of 48%. Lithium metal batteries are capable of high capacity cycling at room temperature.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202106352</identifier><identifier>PMID: 35060295</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ambient temperature ; Discharge ; Electrolytes ; Electrolytic cells ; gel polymer electrolytes (GPEs) ; High temperature ; high‐voltage electrolytes ; Hydrogen bonding ; Ion currents ; ionic conductivity ; Ions ; Lithium ; Lithium batteries ; lithium metal batteries ; Molten salt electrolytes ; Nanotechnology ; Photopolymerization ; Polymer films ; Polymers ; Room temperature ; Solid electrolytes ; supramolecular networks ; Tensile strain ; Thermal stability ; Weight reduction</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-10, Vol.18 (43), p.e2106352-n/a</ispartof><rights>2022 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4132-360dc1ab35499dd1f7c948f171c649005c7e035424d76c9689f9901f1c99fcdd3</citedby><cites>FETCH-LOGICAL-c4132-360dc1ab35499dd1f7c948f171c649005c7e035424d76c9689f9901f1c99fcdd3</cites><orcidid>0000-0002-6747-2016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202106352$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202106352$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35060295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Guo, Changxiang</creatorcontrib><creatorcontrib>Zhou, Honghao</creatorcontrib><creatorcontrib>Shahzad, Muhammad Wakil</creatorcontrib><creatorcontrib>Liu, Terence Xiaoteng</creatorcontrib><creatorcontrib>Oleksandr, Sokolskyi</creatorcontrib><creatorcontrib>Sun, Jining</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Xu, Ben Bin</creatorcontrib><title>Supramolecular Network Structured Gel Polymer Electrolyte with High Ionic Conductivity for Lithium Metal Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Polymer‐based solid electrolytes (PSEs) offer great promise in developing lithium metal batteries due to their attractive features such as safety, light weight, low cost, and high processability. However, a PSE‐based lithium battery usually requires a relatively high temperature (60 °C or above) to complete charge and discharge due to the poor ionic conductivity of PSEs. Herein, a gel polymer electrolytes (GPEs) film with a supramolecular network structure through a facile one‐step photopolymerization is designed and developed. The crosslinked structure and quadruple hydrogen bonding fulfil the GPEs with high thermal stability and good mechanical property with a maximum tensile strain of 48%. The obtained GPEs possess a high ionic conductivity of 3.8 × 10−3 S cm−1 at 25 °C and a decomposition voltage ≥ 4.6 V (vs Li/Li+). The cells assembled with LiFePO4 cathode and Li anode, present an initial discharge specific capacity of 155.6 mAh g−1 and a good cycling efficiency with a capacity retention rate of 81.1% after 100 charges/discharge cycles at 0.1 C at ambient temperature. This work encompasses a route to develop high performance PSEs that can be operated at room temperature for future lithium metal batteries.
Gel polymer electrolytes (GPEs) with a supramolecular network structure have a high ionic conductivity (3.8 × 10−3 S cm−1 at 25 °C). In addition, the GPEs has good mechanical properties and can reach a stretch rate of 48%. Lithium metal batteries are capable of high capacity cycling at room temperature.</description><subject>Ambient temperature</subject><subject>Discharge</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>gel polymer electrolytes (GPEs)</subject><subject>High temperature</subject><subject>high‐voltage electrolytes</subject><subject>Hydrogen bonding</subject><subject>Ion currents</subject><subject>ionic conductivity</subject><subject>Ions</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>lithium metal batteries</subject><subject>Molten salt electrolytes</subject><subject>Nanotechnology</subject><subject>Photopolymerization</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><subject>supramolecular networks</subject><subject>Tensile strain</subject><subject>Thermal stability</subject><subject>Weight reduction</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkU1vEzEQhi0EoiVw5Ygsceklqcfe9cZHiEpbaQtIgbO1tWepizcO_iDKv8dVSpB64TIfmmdejeYl5C2wBTDGz9Pk_YIzDkyKlj8jpyBBzOWSq-fHGtgJeZXSPWMCeNO9JCeiZZJx1Z6SuC7bOEzBoyl-iPQz5l2IP-k6x2JyiWjpJXr6Nfj9hJFeVC7H2mSkO5fv6JX7cUevw8YZugobW3fcb5f3dAyR9hVwZaI3mAdPPw45Y3SYXpMX4-ATvnnMM_L908W31dW8_3J5vfrQz00Dgs-FZNbAcCvaRilrYeyMapYjdGBkoxhrTYesDnljO2mUXKpRKQYjGKVGY62YkbOD7jaGXwVT1pNLBr0fNhhK0lxyzrtWgazo-yfofShxU6_TvONL0XGocUYWB8rEkFLEUW-jm4a418D0gxv6wQ19dKMuvHuULbcT2iP-9_0VUAdg5zzu_yOn1zd9_0_8D-ialxk</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Chen, Fei</creator><creator>Guo, Changxiang</creator><creator>Zhou, Honghao</creator><creator>Shahzad, Muhammad Wakil</creator><creator>Liu, Terence Xiaoteng</creator><creator>Oleksandr, Sokolskyi</creator><creator>Sun, Jining</creator><creator>Dai, Sheng</creator><creator>Xu, Ben Bin</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6747-2016</orcidid></search><sort><creationdate>20221001</creationdate><title>Supramolecular Network Structured Gel Polymer Electrolyte with High Ionic Conductivity for Lithium Metal Batteries</title><author>Chen, Fei ; Guo, Changxiang ; Zhou, Honghao ; Shahzad, Muhammad Wakil ; Liu, Terence Xiaoteng ; Oleksandr, Sokolskyi ; Sun, Jining ; Dai, Sheng ; Xu, Ben Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4132-360dc1ab35499dd1f7c948f171c649005c7e035424d76c9689f9901f1c99fcdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ambient temperature</topic><topic>Discharge</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>gel polymer electrolytes (GPEs)</topic><topic>High temperature</topic><topic>high‐voltage electrolytes</topic><topic>Hydrogen bonding</topic><topic>Ion currents</topic><topic>ionic conductivity</topic><topic>Ions</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>lithium metal batteries</topic><topic>Molten salt electrolytes</topic><topic>Nanotechnology</topic><topic>Photopolymerization</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><topic>supramolecular networks</topic><topic>Tensile strain</topic><topic>Thermal stability</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Guo, Changxiang</creatorcontrib><creatorcontrib>Zhou, Honghao</creatorcontrib><creatorcontrib>Shahzad, Muhammad Wakil</creatorcontrib><creatorcontrib>Liu, Terence Xiaoteng</creatorcontrib><creatorcontrib>Oleksandr, Sokolskyi</creatorcontrib><creatorcontrib>Sun, Jining</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Xu, Ben Bin</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Fei</au><au>Guo, Changxiang</au><au>Zhou, Honghao</au><au>Shahzad, Muhammad Wakil</au><au>Liu, Terence Xiaoteng</au><au>Oleksandr, Sokolskyi</au><au>Sun, Jining</au><au>Dai, Sheng</au><au>Xu, Ben Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supramolecular Network Structured Gel Polymer Electrolyte with High Ionic Conductivity for Lithium Metal Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>18</volume><issue>43</issue><spage>e2106352</spage><epage>n/a</epage><pages>e2106352-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Polymer‐based solid electrolytes (PSEs) offer great promise in developing lithium metal batteries due to their attractive features such as safety, light weight, low cost, and high processability. However, a PSE‐based lithium battery usually requires a relatively high temperature (60 °C or above) to complete charge and discharge due to the poor ionic conductivity of PSEs. Herein, a gel polymer electrolytes (GPEs) film with a supramolecular network structure through a facile one‐step photopolymerization is designed and developed. The crosslinked structure and quadruple hydrogen bonding fulfil the GPEs with high thermal stability and good mechanical property with a maximum tensile strain of 48%. The obtained GPEs possess a high ionic conductivity of 3.8 × 10−3 S cm−1 at 25 °C and a decomposition voltage ≥ 4.6 V (vs Li/Li+). The cells assembled with LiFePO4 cathode and Li anode, present an initial discharge specific capacity of 155.6 mAh g−1 and a good cycling efficiency with a capacity retention rate of 81.1% after 100 charges/discharge cycles at 0.1 C at ambient temperature. This work encompasses a route to develop high performance PSEs that can be operated at room temperature for future lithium metal batteries.
Gel polymer electrolytes (GPEs) with a supramolecular network structure have a high ionic conductivity (3.8 × 10−3 S cm−1 at 25 °C). In addition, the GPEs has good mechanical properties and can reach a stretch rate of 48%. Lithium metal batteries are capable of high capacity cycling at room temperature.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35060295</pmid><doi>10.1002/smll.202106352</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6747-2016</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-10, Vol.18 (43), p.e2106352-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2622275916 |
source | Access via Wiley Online Library |
subjects | Ambient temperature Discharge Electrolytes Electrolytic cells gel polymer electrolytes (GPEs) High temperature high‐voltage electrolytes Hydrogen bonding Ion currents ionic conductivity Ions Lithium Lithium batteries lithium metal batteries Molten salt electrolytes Nanotechnology Photopolymerization Polymer films Polymers Room temperature Solid electrolytes supramolecular networks Tensile strain Thermal stability Weight reduction |
title | Supramolecular Network Structured Gel Polymer Electrolyte with High Ionic Conductivity for Lithium Metal Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supramolecular%20Network%20Structured%20Gel%20Polymer%20Electrolyte%20with%20High%20Ionic%20Conductivity%20for%20Lithium%20Metal%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chen,%20Fei&rft.date=2022-10-01&rft.volume=18&rft.issue=43&rft.spage=e2106352&rft.epage=n/a&rft.pages=e2106352-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202106352&rft_dat=%3Cproquest_cross%3E2728372128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728372128&rft_id=info:pmid/35060295&rfr_iscdi=true |