Supramolecular Network Structured Gel Polymer Electrolyte with High Ionic Conductivity for Lithium Metal Batteries

Polymer‐based solid electrolytes (PSEs) offer great promise in developing lithium metal batteries due to their attractive features such as safety, light weight, low cost, and high processability. However, a PSE‐based lithium battery usually requires a relatively high temperature (60 °C or above) to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-10, Vol.18 (43), p.e2106352-n/a
Hauptverfasser: Chen, Fei, Guo, Changxiang, Zhou, Honghao, Shahzad, Muhammad Wakil, Liu, Terence Xiaoteng, Oleksandr, Sokolskyi, Sun, Jining, Dai, Sheng, Xu, Ben Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 43
container_start_page e2106352
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Chen, Fei
Guo, Changxiang
Zhou, Honghao
Shahzad, Muhammad Wakil
Liu, Terence Xiaoteng
Oleksandr, Sokolskyi
Sun, Jining
Dai, Sheng
Xu, Ben Bin
description Polymer‐based solid electrolytes (PSEs) offer great promise in developing lithium metal batteries due to their attractive features such as safety, light weight, low cost, and high processability. However, a PSE‐based lithium battery usually requires a relatively high temperature (60 °C or above) to complete charge and discharge due to the poor ionic conductivity of PSEs. Herein, a gel polymer electrolytes (GPEs) film with a supramolecular network structure through a facile one‐step photopolymerization is designed and developed. The crosslinked structure and quadruple hydrogen bonding fulfil the GPEs with high thermal stability and good mechanical property with a maximum tensile strain of 48%. The obtained GPEs possess a high ionic conductivity of 3.8 × 10−3 S cm−1 at 25 °C and a decomposition voltage ≥ 4.6 V (vs Li/Li+). The cells assembled with LiFePO4 cathode and Li anode, present an initial discharge specific capacity of 155.6 mAh g−1 and a good cycling efficiency with a capacity retention rate of 81.1% after 100 charges/discharge cycles at 0.1 C at ambient temperature. This work encompasses a route to develop high performance PSEs that can be operated at room temperature for future lithium metal batteries. Gel polymer electrolytes (GPEs) with a supramolecular network structure have a high ionic conductivity (3.8 × 10−3 S cm−1 at 25 °C). In addition, the GPEs has good mechanical properties and can reach a stretch rate of 48%. Lithium metal batteries are capable of high capacity cycling at room temperature.
doi_str_mv 10.1002/smll.202106352
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2622275916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728372128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4132-360dc1ab35499dd1f7c948f171c649005c7e035424d76c9689f9901f1c99fcdd3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoiVw5Ygsceklqcfe9cZHiEpbaQtIgbO1tWepizcO_iDKv8dVSpB64TIfmmdejeYl5C2wBTDGz9Pk_YIzDkyKlj8jpyBBzOWSq-fHGtgJeZXSPWMCeNO9JCeiZZJx1Z6SuC7bOEzBoyl-iPQz5l2IP-k6x2JyiWjpJXr6Nfj9hJFeVC7H2mSkO5fv6JX7cUevw8YZugobW3fcb5f3dAyR9hVwZaI3mAdPPw45Y3SYXpMX4-ATvnnMM_L908W31dW8_3J5vfrQz00Dgs-FZNbAcCvaRilrYeyMapYjdGBkoxhrTYesDnljO2mUXKpRKQYjGKVGY62YkbOD7jaGXwVT1pNLBr0fNhhK0lxyzrtWgazo-yfofShxU6_TvONL0XGocUYWB8rEkFLEUW-jm4a418D0gxv6wQ19dKMuvHuULbcT2iP-9_0VUAdg5zzu_yOn1zd9_0_8D-ialxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728372128</pqid></control><display><type>article</type><title>Supramolecular Network Structured Gel Polymer Electrolyte with High Ionic Conductivity for Lithium Metal Batteries</title><source>Access via Wiley Online Library</source><creator>Chen, Fei ; Guo, Changxiang ; Zhou, Honghao ; Shahzad, Muhammad Wakil ; Liu, Terence Xiaoteng ; Oleksandr, Sokolskyi ; Sun, Jining ; Dai, Sheng ; Xu, Ben Bin</creator><creatorcontrib>Chen, Fei ; Guo, Changxiang ; Zhou, Honghao ; Shahzad, Muhammad Wakil ; Liu, Terence Xiaoteng ; Oleksandr, Sokolskyi ; Sun, Jining ; Dai, Sheng ; Xu, Ben Bin</creatorcontrib><description>Polymer‐based solid electrolytes (PSEs) offer great promise in developing lithium metal batteries due to their attractive features such as safety, light weight, low cost, and high processability. However, a PSE‐based lithium battery usually requires a relatively high temperature (60 °C or above) to complete charge and discharge due to the poor ionic conductivity of PSEs. Herein, a gel polymer electrolytes (GPEs) film with a supramolecular network structure through a facile one‐step photopolymerization is designed and developed. The crosslinked structure and quadruple hydrogen bonding fulfil the GPEs with high thermal stability and good mechanical property with a maximum tensile strain of 48%. The obtained GPEs possess a high ionic conductivity of 3.8 × 10−3 S cm−1 at 25 °C and a decomposition voltage ≥ 4.6 V (vs Li/Li+). The cells assembled with LiFePO4 cathode and Li anode, present an initial discharge specific capacity of 155.6 mAh g−1 and a good cycling efficiency with a capacity retention rate of 81.1% after 100 charges/discharge cycles at 0.1 C at ambient temperature. This work encompasses a route to develop high performance PSEs that can be operated at room temperature for future lithium metal batteries. Gel polymer electrolytes (GPEs) with a supramolecular network structure have a high ionic conductivity (3.8 × 10−3 S cm−1 at 25 °C). In addition, the GPEs has good mechanical properties and can reach a stretch rate of 48%. Lithium metal batteries are capable of high capacity cycling at room temperature.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202106352</identifier><identifier>PMID: 35060295</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ambient temperature ; Discharge ; Electrolytes ; Electrolytic cells ; gel polymer electrolytes (GPEs) ; High temperature ; high‐voltage electrolytes ; Hydrogen bonding ; Ion currents ; ionic conductivity ; Ions ; Lithium ; Lithium batteries ; lithium metal batteries ; Molten salt electrolytes ; Nanotechnology ; Photopolymerization ; Polymer films ; Polymers ; Room temperature ; Solid electrolytes ; supramolecular networks ; Tensile strain ; Thermal stability ; Weight reduction</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-10, Vol.18 (43), p.e2106352-n/a</ispartof><rights>2022 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4132-360dc1ab35499dd1f7c948f171c649005c7e035424d76c9689f9901f1c99fcdd3</citedby><cites>FETCH-LOGICAL-c4132-360dc1ab35499dd1f7c948f171c649005c7e035424d76c9689f9901f1c99fcdd3</cites><orcidid>0000-0002-6747-2016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202106352$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202106352$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35060295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Guo, Changxiang</creatorcontrib><creatorcontrib>Zhou, Honghao</creatorcontrib><creatorcontrib>Shahzad, Muhammad Wakil</creatorcontrib><creatorcontrib>Liu, Terence Xiaoteng</creatorcontrib><creatorcontrib>Oleksandr, Sokolskyi</creatorcontrib><creatorcontrib>Sun, Jining</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Xu, Ben Bin</creatorcontrib><title>Supramolecular Network Structured Gel Polymer Electrolyte with High Ionic Conductivity for Lithium Metal Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Polymer‐based solid electrolytes (PSEs) offer great promise in developing lithium metal batteries due to their attractive features such as safety, light weight, low cost, and high processability. However, a PSE‐based lithium battery usually requires a relatively high temperature (60 °C or above) to complete charge and discharge due to the poor ionic conductivity of PSEs. Herein, a gel polymer electrolytes (GPEs) film with a supramolecular network structure through a facile one‐step photopolymerization is designed and developed. The crosslinked structure and quadruple hydrogen bonding fulfil the GPEs with high thermal stability and good mechanical property with a maximum tensile strain of 48%. The obtained GPEs possess a high ionic conductivity of 3.8 × 10−3 S cm−1 at 25 °C and a decomposition voltage ≥ 4.6 V (vs Li/Li+). The cells assembled with LiFePO4 cathode and Li anode, present an initial discharge specific capacity of 155.6 mAh g−1 and a good cycling efficiency with a capacity retention rate of 81.1% after 100 charges/discharge cycles at 0.1 C at ambient temperature. This work encompasses a route to develop high performance PSEs that can be operated at room temperature for future lithium metal batteries. Gel polymer electrolytes (GPEs) with a supramolecular network structure have a high ionic conductivity (3.8 × 10−3 S cm−1 at 25 °C). In addition, the GPEs has good mechanical properties and can reach a stretch rate of 48%. Lithium metal batteries are capable of high capacity cycling at room temperature.</description><subject>Ambient temperature</subject><subject>Discharge</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>gel polymer electrolytes (GPEs)</subject><subject>High temperature</subject><subject>high‐voltage electrolytes</subject><subject>Hydrogen bonding</subject><subject>Ion currents</subject><subject>ionic conductivity</subject><subject>Ions</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>lithium metal batteries</subject><subject>Molten salt electrolytes</subject><subject>Nanotechnology</subject><subject>Photopolymerization</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><subject>supramolecular networks</subject><subject>Tensile strain</subject><subject>Thermal stability</subject><subject>Weight reduction</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkU1vEzEQhi0EoiVw5Ygsceklqcfe9cZHiEpbaQtIgbO1tWepizcO_iDKv8dVSpB64TIfmmdejeYl5C2wBTDGz9Pk_YIzDkyKlj8jpyBBzOWSq-fHGtgJeZXSPWMCeNO9JCeiZZJx1Z6SuC7bOEzBoyl-iPQz5l2IP-k6x2JyiWjpJXr6Nfj9hJFeVC7H2mSkO5fv6JX7cUevw8YZugobW3fcb5f3dAyR9hVwZaI3mAdPPw45Y3SYXpMX4-ATvnnMM_L908W31dW8_3J5vfrQz00Dgs-FZNbAcCvaRilrYeyMapYjdGBkoxhrTYesDnljO2mUXKpRKQYjGKVGY62YkbOD7jaGXwVT1pNLBr0fNhhK0lxyzrtWgazo-yfofShxU6_TvONL0XGocUYWB8rEkFLEUW-jm4a418D0gxv6wQ19dKMuvHuULbcT2iP-9_0VUAdg5zzu_yOn1zd9_0_8D-ialxk</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Chen, Fei</creator><creator>Guo, Changxiang</creator><creator>Zhou, Honghao</creator><creator>Shahzad, Muhammad Wakil</creator><creator>Liu, Terence Xiaoteng</creator><creator>Oleksandr, Sokolskyi</creator><creator>Sun, Jining</creator><creator>Dai, Sheng</creator><creator>Xu, Ben Bin</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6747-2016</orcidid></search><sort><creationdate>20221001</creationdate><title>Supramolecular Network Structured Gel Polymer Electrolyte with High Ionic Conductivity for Lithium Metal Batteries</title><author>Chen, Fei ; Guo, Changxiang ; Zhou, Honghao ; Shahzad, Muhammad Wakil ; Liu, Terence Xiaoteng ; Oleksandr, Sokolskyi ; Sun, Jining ; Dai, Sheng ; Xu, Ben Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4132-360dc1ab35499dd1f7c948f171c649005c7e035424d76c9689f9901f1c99fcdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ambient temperature</topic><topic>Discharge</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>gel polymer electrolytes (GPEs)</topic><topic>High temperature</topic><topic>high‐voltage electrolytes</topic><topic>Hydrogen bonding</topic><topic>Ion currents</topic><topic>ionic conductivity</topic><topic>Ions</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>lithium metal batteries</topic><topic>Molten salt electrolytes</topic><topic>Nanotechnology</topic><topic>Photopolymerization</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><topic>supramolecular networks</topic><topic>Tensile strain</topic><topic>Thermal stability</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Guo, Changxiang</creatorcontrib><creatorcontrib>Zhou, Honghao</creatorcontrib><creatorcontrib>Shahzad, Muhammad Wakil</creatorcontrib><creatorcontrib>Liu, Terence Xiaoteng</creatorcontrib><creatorcontrib>Oleksandr, Sokolskyi</creatorcontrib><creatorcontrib>Sun, Jining</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Xu, Ben Bin</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Fei</au><au>Guo, Changxiang</au><au>Zhou, Honghao</au><au>Shahzad, Muhammad Wakil</au><au>Liu, Terence Xiaoteng</au><au>Oleksandr, Sokolskyi</au><au>Sun, Jining</au><au>Dai, Sheng</au><au>Xu, Ben Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supramolecular Network Structured Gel Polymer Electrolyte with High Ionic Conductivity for Lithium Metal Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>18</volume><issue>43</issue><spage>e2106352</spage><epage>n/a</epage><pages>e2106352-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Polymer‐based solid electrolytes (PSEs) offer great promise in developing lithium metal batteries due to their attractive features such as safety, light weight, low cost, and high processability. However, a PSE‐based lithium battery usually requires a relatively high temperature (60 °C or above) to complete charge and discharge due to the poor ionic conductivity of PSEs. Herein, a gel polymer electrolytes (GPEs) film with a supramolecular network structure through a facile one‐step photopolymerization is designed and developed. The crosslinked structure and quadruple hydrogen bonding fulfil the GPEs with high thermal stability and good mechanical property with a maximum tensile strain of 48%. The obtained GPEs possess a high ionic conductivity of 3.8 × 10−3 S cm−1 at 25 °C and a decomposition voltage ≥ 4.6 V (vs Li/Li+). The cells assembled with LiFePO4 cathode and Li anode, present an initial discharge specific capacity of 155.6 mAh g−1 and a good cycling efficiency with a capacity retention rate of 81.1% after 100 charges/discharge cycles at 0.1 C at ambient temperature. This work encompasses a route to develop high performance PSEs that can be operated at room temperature for future lithium metal batteries. Gel polymer electrolytes (GPEs) with a supramolecular network structure have a high ionic conductivity (3.8 × 10−3 S cm−1 at 25 °C). In addition, the GPEs has good mechanical properties and can reach a stretch rate of 48%. Lithium metal batteries are capable of high capacity cycling at room temperature.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35060295</pmid><doi>10.1002/smll.202106352</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6747-2016</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-10, Vol.18 (43), p.e2106352-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2622275916
source Access via Wiley Online Library
subjects Ambient temperature
Discharge
Electrolytes
Electrolytic cells
gel polymer electrolytes (GPEs)
High temperature
high‐voltage electrolytes
Hydrogen bonding
Ion currents
ionic conductivity
Ions
Lithium
Lithium batteries
lithium metal batteries
Molten salt electrolytes
Nanotechnology
Photopolymerization
Polymer films
Polymers
Room temperature
Solid electrolytes
supramolecular networks
Tensile strain
Thermal stability
Weight reduction
title Supramolecular Network Structured Gel Polymer Electrolyte with High Ionic Conductivity for Lithium Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supramolecular%20Network%20Structured%20Gel%20Polymer%20Electrolyte%20with%20High%20Ionic%20Conductivity%20for%20Lithium%20Metal%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chen,%20Fei&rft.date=2022-10-01&rft.volume=18&rft.issue=43&rft.spage=e2106352&rft.epage=n/a&rft.pages=e2106352-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202106352&rft_dat=%3Cproquest_cross%3E2728372128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728372128&rft_id=info:pmid/35060295&rfr_iscdi=true