Interpretability analysis for thermal sensation machine learning models: An exploration based on the SHAP approach

Machine learning models have been widely used for studying thermal sensations. However, the black‐box properties of machine learning models lead to the lack of model transparency, and existing explanations for the thermal sensation models are generally flawed in terms of the perspectives of interpre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indoor air 2022-02, Vol.32 (2), p.e12984-n/a
Hauptverfasser: Yang, Yuren, Yuan, Ye, Han, Zhen, Liu, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e12984
container_title Indoor air
container_volume 32
creator Yang, Yuren
Yuan, Ye
Han, Zhen
Liu, Gang
description Machine learning models have been widely used for studying thermal sensations. However, the black‐box properties of machine learning models lead to the lack of model transparency, and existing explanations for the thermal sensation models are generally flawed in terms of the perspectives of interpretable methods. In this study, we perform an interpretability analysis using the "SHapley Additive exPlanation" (SHAP) from game theory for thermal sensation machine learning models. The effects of different features on thermal sensations and typical decision routes in the models are investigated from both local and global perspectives, and the properties of correlation between features and thermal sensations and decision routes within machine learning models are summarized. The differences in the effects of features across samples reflect the effects of features on thermal sensations not only can be demonstrated by significant magnitudes but also by differentiation. The effects of features on thermal sensations often appear in the form of combinations of two to four features, which determine the final thermal sensation in most cases. Therefore, the neutral environment may actually be a dynamic high‐dimensional space consisting of certain combinations of features in certain ranges with changing shapes.
doi_str_mv 10.1111/ina.12984
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2621659488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621659488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-f93e13d6d998d90833a8d3d542ba55be89598fba62cbc6691a476abc33e3898a3</originalsourceid><addsrcrecordid>eNp10UFP2zAUB3ALDUHpduALTJZ2GYeAHTuuza1CQCtVGxLbOXpJXoYrxwl2qtFvjyHAYdJ8sQ-_97f0_oSccnbO07mwHs55brQ8IDOuGMuYUvoTmTHDikwZuTgmJzFuGeMLYcQRORYFk1rmfEbC2o8YhoAjVNbZcU_Bg9tHG2nbBzo-YOjA0Yg-wmh7TzuoH6xH6hCCt_4P7foGXbykS0_xaXB9mFwFERuaHimC3q-WdxSGIfRp-jM5bMFF_PJ2z8nvm-tfV6ts8_N2fbXcZLXQWmatEchFoxpjdGOYFgJ0I5pC5hUURYXaFEa3Fai8rmqlDAe5UFDVQqDQRoOYk-9Tbvr2cYdxLDsba3QOPPa7WOYq56owUutEv_1Dt_0upEW8KCEWuTRMJnU2qTr0MQZsyyHYDsK-5Kx8KaJMRZSvRST79S1xV3XYfMj3zSdwMYG_1uH-_0nl-sdyinwGIjmSjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633724904</pqid></control><display><type>article</type><title>Interpretability analysis for thermal sensation machine learning models: An exploration based on the SHAP approach</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Yuren ; Yuan, Ye ; Han, Zhen ; Liu, Gang</creator><creatorcontrib>Yang, Yuren ; Yuan, Ye ; Han, Zhen ; Liu, Gang</creatorcontrib><description>Machine learning models have been widely used for studying thermal sensations. However, the black‐box properties of machine learning models lead to the lack of model transparency, and existing explanations for the thermal sensation models are generally flawed in terms of the perspectives of interpretable methods. In this study, we perform an interpretability analysis using the "SHapley Additive exPlanation" (SHAP) from game theory for thermal sensation machine learning models. The effects of different features on thermal sensations and typical decision routes in the models are investigated from both local and global perspectives, and the properties of correlation between features and thermal sensations and decision routes within machine learning models are summarized. The differences in the effects of features across samples reflect the effects of features on thermal sensations not only can be demonstrated by significant magnitudes but also by differentiation. The effects of features on thermal sensations often appear in the form of combinations of two to four features, which determine the final thermal sensation in most cases. Therefore, the neutral environment may actually be a dynamic high‐dimensional space consisting of certain combinations of features in certain ranges with changing shapes.</description><identifier>ISSN: 0905-6947</identifier><identifier>ISSN: 1600-0668</identifier><identifier>EISSN: 1600-0668</identifier><identifier>DOI: 10.1111/ina.12984</identifier><identifier>PMID: 35048421</identifier><language>eng</language><publisher>England: Hindawi Limited</publisher><subject>Game theory ; interpretability analysis ; Learning algorithms ; local explanations ; Machine learning ; neutral environment ; SHAP ; thermal sensation</subject><ispartof>Indoor air, 2022-02, Vol.32 (2), p.e12984-n/a</ispartof><rights>2022 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>2022 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2022 John Wiley &amp; Sons A/S</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-f93e13d6d998d90833a8d3d542ba55be89598fba62cbc6691a476abc33e3898a3</citedby><cites>FETCH-LOGICAL-c3884-f93e13d6d998d90833a8d3d542ba55be89598fba62cbc6691a476abc33e3898a3</cites><orcidid>0000-0001-6185-5297 ; 0000-0002-2277-5806 ; 0000-0002-7864-7846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fina.12984$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fina.12984$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35048421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yuren</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Han, Zhen</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><title>Interpretability analysis for thermal sensation machine learning models: An exploration based on the SHAP approach</title><title>Indoor air</title><addtitle>Indoor Air</addtitle><description>Machine learning models have been widely used for studying thermal sensations. However, the black‐box properties of machine learning models lead to the lack of model transparency, and existing explanations for the thermal sensation models are generally flawed in terms of the perspectives of interpretable methods. In this study, we perform an interpretability analysis using the "SHapley Additive exPlanation" (SHAP) from game theory for thermal sensation machine learning models. The effects of different features on thermal sensations and typical decision routes in the models are investigated from both local and global perspectives, and the properties of correlation between features and thermal sensations and decision routes within machine learning models are summarized. The differences in the effects of features across samples reflect the effects of features on thermal sensations not only can be demonstrated by significant magnitudes but also by differentiation. The effects of features on thermal sensations often appear in the form of combinations of two to four features, which determine the final thermal sensation in most cases. Therefore, the neutral environment may actually be a dynamic high‐dimensional space consisting of certain combinations of features in certain ranges with changing shapes.</description><subject>Game theory</subject><subject>interpretability analysis</subject><subject>Learning algorithms</subject><subject>local explanations</subject><subject>Machine learning</subject><subject>neutral environment</subject><subject>SHAP</subject><subject>thermal sensation</subject><issn>0905-6947</issn><issn>1600-0668</issn><issn>1600-0668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10UFP2zAUB3ALDUHpduALTJZ2GYeAHTuuza1CQCtVGxLbOXpJXoYrxwl2qtFvjyHAYdJ8sQ-_97f0_oSccnbO07mwHs55brQ8IDOuGMuYUvoTmTHDikwZuTgmJzFuGeMLYcQRORYFk1rmfEbC2o8YhoAjVNbZcU_Bg9tHG2nbBzo-YOjA0Yg-wmh7TzuoH6xH6hCCt_4P7foGXbykS0_xaXB9mFwFERuaHimC3q-WdxSGIfRp-jM5bMFF_PJ2z8nvm-tfV6ts8_N2fbXcZLXQWmatEchFoxpjdGOYFgJ0I5pC5hUURYXaFEa3Fai8rmqlDAe5UFDVQqDQRoOYk-9Tbvr2cYdxLDsba3QOPPa7WOYq56owUutEv_1Dt_0upEW8KCEWuTRMJnU2qTr0MQZsyyHYDsK-5Kx8KaJMRZSvRST79S1xV3XYfMj3zSdwMYG_1uH-_0nl-sdyinwGIjmSjg</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Yang, Yuren</creator><creator>Yuan, Ye</creator><creator>Han, Zhen</creator><creator>Liu, Gang</creator><general>Hindawi Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6185-5297</orcidid><orcidid>https://orcid.org/0000-0002-2277-5806</orcidid><orcidid>https://orcid.org/0000-0002-7864-7846</orcidid></search><sort><creationdate>202202</creationdate><title>Interpretability analysis for thermal sensation machine learning models: An exploration based on the SHAP approach</title><author>Yang, Yuren ; Yuan, Ye ; Han, Zhen ; Liu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-f93e13d6d998d90833a8d3d542ba55be89598fba62cbc6691a476abc33e3898a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Game theory</topic><topic>interpretability analysis</topic><topic>Learning algorithms</topic><topic>local explanations</topic><topic>Machine learning</topic><topic>neutral environment</topic><topic>SHAP</topic><topic>thermal sensation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuren</creatorcontrib><creatorcontrib>Yuan, Ye</creatorcontrib><creatorcontrib>Han, Zhen</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Indoor air</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yuren</au><au>Yuan, Ye</au><au>Han, Zhen</au><au>Liu, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretability analysis for thermal sensation machine learning models: An exploration based on the SHAP approach</atitle><jtitle>Indoor air</jtitle><addtitle>Indoor Air</addtitle><date>2022-02</date><risdate>2022</risdate><volume>32</volume><issue>2</issue><spage>e12984</spage><epage>n/a</epage><pages>e12984-n/a</pages><issn>0905-6947</issn><issn>1600-0668</issn><eissn>1600-0668</eissn><abstract>Machine learning models have been widely used for studying thermal sensations. However, the black‐box properties of machine learning models lead to the lack of model transparency, and existing explanations for the thermal sensation models are generally flawed in terms of the perspectives of interpretable methods. In this study, we perform an interpretability analysis using the "SHapley Additive exPlanation" (SHAP) from game theory for thermal sensation machine learning models. The effects of different features on thermal sensations and typical decision routes in the models are investigated from both local and global perspectives, and the properties of correlation between features and thermal sensations and decision routes within machine learning models are summarized. The differences in the effects of features across samples reflect the effects of features on thermal sensations not only can be demonstrated by significant magnitudes but also by differentiation. The effects of features on thermal sensations often appear in the form of combinations of two to four features, which determine the final thermal sensation in most cases. Therefore, the neutral environment may actually be a dynamic high‐dimensional space consisting of certain combinations of features in certain ranges with changing shapes.</abstract><cop>England</cop><pub>Hindawi Limited</pub><pmid>35048421</pmid><doi>10.1111/ina.12984</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6185-5297</orcidid><orcidid>https://orcid.org/0000-0002-2277-5806</orcidid><orcidid>https://orcid.org/0000-0002-7864-7846</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0905-6947
ispartof Indoor air, 2022-02, Vol.32 (2), p.e12984-n/a
issn 0905-6947
1600-0668
1600-0668
language eng
recordid cdi_proquest_miscellaneous_2621659488
source Wiley Online Library Journals Frontfile Complete
subjects Game theory
interpretability analysis
Learning algorithms
local explanations
Machine learning
neutral environment
SHAP
thermal sensation
title Interpretability analysis for thermal sensation machine learning models: An exploration based on the SHAP approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretability%20analysis%20for%20thermal%20sensation%20machine%20learning%20models:%20An%20exploration%20based%20on%20the%20SHAP%20approach&rft.jtitle=Indoor%20air&rft.au=Yang,%20Yuren&rft.date=2022-02&rft.volume=32&rft.issue=2&rft.spage=e12984&rft.epage=n/a&rft.pages=e12984-n/a&rft.issn=0905-6947&rft.eissn=1600-0668&rft_id=info:doi/10.1111/ina.12984&rft_dat=%3Cproquest_cross%3E2621659488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633724904&rft_id=info:pmid/35048421&rfr_iscdi=true