Multiphysics microfluidics for cell manipulation and separation: a review
Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual phy...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2022-02, Vol.22 (3), p.423-444 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 444 |
---|---|
container_issue | 3 |
container_start_page | 423 |
container_title | Lab on a chip |
container_volume | 22 |
creator | Cha, Haotian Fallahi, Hedieh Dai, Yuchen Yuan, Dan An, Hongjie Nguyen, Nam-Trung Zhang, Jun |
description | Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions. |
doi_str_mv | 10.1039/d1lc00869b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2621659381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624475415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-12d6721984d9936213f1350ea55d3adbe4055c20b8988a37b2bbd93b5a516bbf3</originalsourceid><addsrcrecordid>eNpdkEtLxDAUhYMozji68QdIwY0I1dwmaRN3Or4GRtzouiRNihn6MmmU-fe2MzoLV_cc-DicexA6BXwFmIhrDVWBMU-F2kNToBmJMXCxv9Mim6Aj71cYA6MpP0QTwjDlAtIpWryEqrfdx9rbwke1LVxbVsHq0ZWtiwpTVVEtG9uFSva2bSLZ6MibTrqNvYlk5MyXNd_H6KCUlTcnv3eG3h8f3ubP8fL1aTG_XcYFYdDHkOg0S0BwqoUgaQKkhKGOkYxpIrUyFDNWJFhxwbkkmUqU0oIoJhmkSpVkhi62uZ1rP4PxfV5bP9aUjWmDz5MhM2WCcBjQ83_oqg2uGdqNFKUZo8AG6nJLDb9770yZd87W0q1zwPk4cH4Py_lm4LsBPvuNDKo2eof-LUp-AJfkdNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624475415</pqid></control><display><type>article</type><title>Multiphysics microfluidics for cell manipulation and separation: a review</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Cha, Haotian ; Fallahi, Hedieh ; Dai, Yuchen ; Yuan, Dan ; An, Hongjie ; Nguyen, Nam-Trung ; Zhang, Jun</creator><creatorcontrib>Cha, Haotian ; Fallahi, Hedieh ; Dai, Yuchen ; Yuan, Dan ; An, Hongjie ; Nguyen, Nam-Trung ; Zhang, Jun</creatorcontrib><description>Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d1lc00869b</identifier><identifier>PMID: 35048916</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acoustics ; Biomedical materials ; Cell Separation ; Coupling ; Dielectrophoresis ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Microfluidics - methods ; State-of-the-art reviews</subject><ispartof>Lab on a chip, 2022-02, Vol.22 (3), p.423-444</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-12d6721984d9936213f1350ea55d3adbe4055c20b8988a37b2bbd93b5a516bbf3</citedby><cites>FETCH-LOGICAL-c351t-12d6721984d9936213f1350ea55d3adbe4055c20b8988a37b2bbd93b5a516bbf3</cites><orcidid>0000-0003-4095-1751 ; 0000-0003-1113-6264 ; 0000-0002-6016-4782 ; 0000-0003-3626-5361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35048916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cha, Haotian</creatorcontrib><creatorcontrib>Fallahi, Hedieh</creatorcontrib><creatorcontrib>Dai, Yuchen</creatorcontrib><creatorcontrib>Yuan, Dan</creatorcontrib><creatorcontrib>An, Hongjie</creatorcontrib><creatorcontrib>Nguyen, Nam-Trung</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><title>Multiphysics microfluidics for cell manipulation and separation: a review</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions.</description><subject>Acoustics</subject><subject>Biomedical materials</subject><subject>Cell Separation</subject><subject>Coupling</subject><subject>Dielectrophoresis</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>State-of-the-art reviews</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkEtLxDAUhYMozji68QdIwY0I1dwmaRN3Or4GRtzouiRNihn6MmmU-fe2MzoLV_cc-DicexA6BXwFmIhrDVWBMU-F2kNToBmJMXCxv9Mim6Aj71cYA6MpP0QTwjDlAtIpWryEqrfdx9rbwke1LVxbVsHq0ZWtiwpTVVEtG9uFSva2bSLZ6MibTrqNvYlk5MyXNd_H6KCUlTcnv3eG3h8f3ubP8fL1aTG_XcYFYdDHkOg0S0BwqoUgaQKkhKGOkYxpIrUyFDNWJFhxwbkkmUqU0oIoJhmkSpVkhi62uZ1rP4PxfV5bP9aUjWmDz5MhM2WCcBjQ83_oqg2uGdqNFKUZo8AG6nJLDb9770yZd87W0q1zwPk4cH4Py_lm4LsBPvuNDKo2eof-LUp-AJfkdNs</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Cha, Haotian</creator><creator>Fallahi, Hedieh</creator><creator>Dai, Yuchen</creator><creator>Yuan, Dan</creator><creator>An, Hongjie</creator><creator>Nguyen, Nam-Trung</creator><creator>Zhang, Jun</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4095-1751</orcidid><orcidid>https://orcid.org/0000-0003-1113-6264</orcidid><orcidid>https://orcid.org/0000-0002-6016-4782</orcidid><orcidid>https://orcid.org/0000-0003-3626-5361</orcidid></search><sort><creationdate>20220201</creationdate><title>Multiphysics microfluidics for cell manipulation and separation: a review</title><author>Cha, Haotian ; Fallahi, Hedieh ; Dai, Yuchen ; Yuan, Dan ; An, Hongjie ; Nguyen, Nam-Trung ; Zhang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-12d6721984d9936213f1350ea55d3adbe4055c20b8988a37b2bbd93b5a516bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Biomedical materials</topic><topic>Cell Separation</topic><topic>Coupling</topic><topic>Dielectrophoresis</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>State-of-the-art reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cha, Haotian</creatorcontrib><creatorcontrib>Fallahi, Hedieh</creatorcontrib><creatorcontrib>Dai, Yuchen</creatorcontrib><creatorcontrib>Yuan, Dan</creatorcontrib><creatorcontrib>An, Hongjie</creatorcontrib><creatorcontrib>Nguyen, Nam-Trung</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cha, Haotian</au><au>Fallahi, Hedieh</au><au>Dai, Yuchen</au><au>Yuan, Dan</au><au>An, Hongjie</au><au>Nguyen, Nam-Trung</au><au>Zhang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphysics microfluidics for cell manipulation and separation: a review</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>22</volume><issue>3</issue><spage>423</spage><epage>444</epage><pages>423-444</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35048916</pmid><doi>10.1039/d1lc00869b</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4095-1751</orcidid><orcidid>https://orcid.org/0000-0003-1113-6264</orcidid><orcidid>https://orcid.org/0000-0002-6016-4782</orcidid><orcidid>https://orcid.org/0000-0003-3626-5361</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2022-02, Vol.22 (3), p.423-444 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_2621659381 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Acoustics Biomedical materials Cell Separation Coupling Dielectrophoresis Microfluidic Analytical Techniques - methods Microfluidics Microfluidics - methods State-of-the-art reviews |
title | Multiphysics microfluidics for cell manipulation and separation: a review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphysics%20microfluidics%20for%20cell%20manipulation%20and%20separation:%20a%20review&rft.jtitle=Lab%20on%20a%20chip&rft.au=Cha,%20Haotian&rft.date=2022-02-01&rft.volume=22&rft.issue=3&rft.spage=423&rft.epage=444&rft.pages=423-444&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d1lc00869b&rft_dat=%3Cproquest_cross%3E2624475415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624475415&rft_id=info:pmid/35048916&rfr_iscdi=true |