Multiphysics microfluidics for cell manipulation and separation: a review

Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual phy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2022-02, Vol.22 (3), p.423-444
Hauptverfasser: Cha, Haotian, Fallahi, Hedieh, Dai, Yuchen, Yuan, Dan, An, Hongjie, Nguyen, Nam-Trung, Zhang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 444
container_issue 3
container_start_page 423
container_title Lab on a chip
container_volume 22
creator Cha, Haotian
Fallahi, Hedieh
Dai, Yuchen
Yuan, Dan
An, Hongjie
Nguyen, Nam-Trung
Zhang, Jun
description Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions.
doi_str_mv 10.1039/d1lc00869b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2621659381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624475415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-12d6721984d9936213f1350ea55d3adbe4055c20b8988a37b2bbd93b5a516bbf3</originalsourceid><addsrcrecordid>eNpdkEtLxDAUhYMozji68QdIwY0I1dwmaRN3Or4GRtzouiRNihn6MmmU-fe2MzoLV_cc-DicexA6BXwFmIhrDVWBMU-F2kNToBmJMXCxv9Mim6Aj71cYA6MpP0QTwjDlAtIpWryEqrfdx9rbwke1LVxbVsHq0ZWtiwpTVVEtG9uFSva2bSLZ6MibTrqNvYlk5MyXNd_H6KCUlTcnv3eG3h8f3ubP8fL1aTG_XcYFYdDHkOg0S0BwqoUgaQKkhKGOkYxpIrUyFDNWJFhxwbkkmUqU0oIoJhmkSpVkhi62uZ1rP4PxfV5bP9aUjWmDz5MhM2WCcBjQ83_oqg2uGdqNFKUZo8AG6nJLDb9770yZd87W0q1zwPk4cH4Py_lm4LsBPvuNDKo2eof-LUp-AJfkdNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624475415</pqid></control><display><type>article</type><title>Multiphysics microfluidics for cell manipulation and separation: a review</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Cha, Haotian ; Fallahi, Hedieh ; Dai, Yuchen ; Yuan, Dan ; An, Hongjie ; Nguyen, Nam-Trung ; Zhang, Jun</creator><creatorcontrib>Cha, Haotian ; Fallahi, Hedieh ; Dai, Yuchen ; Yuan, Dan ; An, Hongjie ; Nguyen, Nam-Trung ; Zhang, Jun</creatorcontrib><description>Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d1lc00869b</identifier><identifier>PMID: 35048916</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acoustics ; Biomedical materials ; Cell Separation ; Coupling ; Dielectrophoresis ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Microfluidics - methods ; State-of-the-art reviews</subject><ispartof>Lab on a chip, 2022-02, Vol.22 (3), p.423-444</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-12d6721984d9936213f1350ea55d3adbe4055c20b8988a37b2bbd93b5a516bbf3</citedby><cites>FETCH-LOGICAL-c351t-12d6721984d9936213f1350ea55d3adbe4055c20b8988a37b2bbd93b5a516bbf3</cites><orcidid>0000-0003-4095-1751 ; 0000-0003-1113-6264 ; 0000-0002-6016-4782 ; 0000-0003-3626-5361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35048916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cha, Haotian</creatorcontrib><creatorcontrib>Fallahi, Hedieh</creatorcontrib><creatorcontrib>Dai, Yuchen</creatorcontrib><creatorcontrib>Yuan, Dan</creatorcontrib><creatorcontrib>An, Hongjie</creatorcontrib><creatorcontrib>Nguyen, Nam-Trung</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><title>Multiphysics microfluidics for cell manipulation and separation: a review</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions.</description><subject>Acoustics</subject><subject>Biomedical materials</subject><subject>Cell Separation</subject><subject>Coupling</subject><subject>Dielectrophoresis</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>State-of-the-art reviews</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkEtLxDAUhYMozji68QdIwY0I1dwmaRN3Or4GRtzouiRNihn6MmmU-fe2MzoLV_cc-DicexA6BXwFmIhrDVWBMU-F2kNToBmJMXCxv9Mim6Aj71cYA6MpP0QTwjDlAtIpWryEqrfdx9rbwke1LVxbVsHq0ZWtiwpTVVEtG9uFSva2bSLZ6MibTrqNvYlk5MyXNd_H6KCUlTcnv3eG3h8f3ubP8fL1aTG_XcYFYdDHkOg0S0BwqoUgaQKkhKGOkYxpIrUyFDNWJFhxwbkkmUqU0oIoJhmkSpVkhi62uZ1rP4PxfV5bP9aUjWmDz5MhM2WCcBjQ83_oqg2uGdqNFKUZo8AG6nJLDb9770yZd87W0q1zwPk4cH4Py_lm4LsBPvuNDKo2eof-LUp-AJfkdNs</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Cha, Haotian</creator><creator>Fallahi, Hedieh</creator><creator>Dai, Yuchen</creator><creator>Yuan, Dan</creator><creator>An, Hongjie</creator><creator>Nguyen, Nam-Trung</creator><creator>Zhang, Jun</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4095-1751</orcidid><orcidid>https://orcid.org/0000-0003-1113-6264</orcidid><orcidid>https://orcid.org/0000-0002-6016-4782</orcidid><orcidid>https://orcid.org/0000-0003-3626-5361</orcidid></search><sort><creationdate>20220201</creationdate><title>Multiphysics microfluidics for cell manipulation and separation: a review</title><author>Cha, Haotian ; Fallahi, Hedieh ; Dai, Yuchen ; Yuan, Dan ; An, Hongjie ; Nguyen, Nam-Trung ; Zhang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-12d6721984d9936213f1350ea55d3adbe4055c20b8988a37b2bbd93b5a516bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Biomedical materials</topic><topic>Cell Separation</topic><topic>Coupling</topic><topic>Dielectrophoresis</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>State-of-the-art reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cha, Haotian</creatorcontrib><creatorcontrib>Fallahi, Hedieh</creatorcontrib><creatorcontrib>Dai, Yuchen</creatorcontrib><creatorcontrib>Yuan, Dan</creatorcontrib><creatorcontrib>An, Hongjie</creatorcontrib><creatorcontrib>Nguyen, Nam-Trung</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cha, Haotian</au><au>Fallahi, Hedieh</au><au>Dai, Yuchen</au><au>Yuan, Dan</au><au>An, Hongjie</au><au>Nguyen, Nam-Trung</au><au>Zhang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphysics microfluidics for cell manipulation and separation: a review</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>22</volume><issue>3</issue><spage>423</spage><epage>444</epage><pages>423-444</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35048916</pmid><doi>10.1039/d1lc00869b</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4095-1751</orcidid><orcidid>https://orcid.org/0000-0003-1113-6264</orcidid><orcidid>https://orcid.org/0000-0002-6016-4782</orcidid><orcidid>https://orcid.org/0000-0003-3626-5361</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2022-02, Vol.22 (3), p.423-444
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_2621659381
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Acoustics
Biomedical materials
Cell Separation
Coupling
Dielectrophoresis
Microfluidic Analytical Techniques - methods
Microfluidics
Microfluidics - methods
State-of-the-art reviews
title Multiphysics microfluidics for cell manipulation and separation: a review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphysics%20microfluidics%20for%20cell%20manipulation%20and%20separation:%20a%20review&rft.jtitle=Lab%20on%20a%20chip&rft.au=Cha,%20Haotian&rft.date=2022-02-01&rft.volume=22&rft.issue=3&rft.spage=423&rft.epage=444&rft.pages=423-444&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d1lc00869b&rft_dat=%3Cproquest_cross%3E2624475415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624475415&rft_id=info:pmid/35048916&rfr_iscdi=true