Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots

Key message This study focused on the role of CLE1–7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots. In the natural environment, plants employ diverse signaling molecules including peptides to de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology 2022-02, Vol.108 (3), p.225-239
Hauptverfasser: Ma, Dichao, Endo, Satoshi, Betsuyaku, Eriko, Fujiwara, Toru, Betsuyaku, Shigeyuki, Fukuda, Hiroo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 3
container_start_page 225
container_title Plant molecular biology
container_volume 108
creator Ma, Dichao
Endo, Satoshi
Betsuyaku, Eriko
Fujiwara, Toru
Betsuyaku, Shigeyuki
Fukuda, Hiroo
description Key message This study focused on the role of CLE1–7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots. In the natural environment, plants employ diverse signaling molecules including peptides to defend themselves against various pathogen attacks. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED ( CLE ) genes ( CLE1–7 ) respond to biotic stimuli. CLE3 showed significant up-regulation upon treatment with flg22, Pep2, and salicylic acid (SA). Quantitative real-time PCR (qRT-PCR) analysis revealed that CLE3 expression is regulated by the NON-EXPRESSOR OF PR GENES1 ( NPR1 )-dependent SA signaling and flg22–FLAGELLIN-SENSITIVE 2 (FLS2) signaling pathways. We demonstrated that SA-induced up-regulation of CLE3 in roots was required for activation of WRKY33 , a gene involved in the regulation of systemic acquired resistance (SAR), in shoots, suggesting that CLE3 functions as a root-derived signal that regulates the expression of defense-related genes in shoots. Microarray analysis of transgenic Arabidopsis lines overexpressing CLE3 under the control of a β-estradiol-inducible promoter revealed that root-confined CLE3 overexpression affected gene expression in both roots and shoots. Comparison of CLE2 - and CLE3 -induced genes indicated that CLE2 and CLE3 peptides target a few common but largely distinct downstream genes. These results suggest that root-derived CLE3 is involved in the regulation of systemic rather than local immune responses. Our study also sheds light on the potential role of CLE peptides in long-distance regulation of plant immunity.
doi_str_mv 10.1007/s11103-021-01234-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2620778915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A703950685</galeid><sourcerecordid>A703950685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-43c96488199193432943994b2b19431f0977719cc1e275ceea718d1afec364d23</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYModq1-AR9kwBdfUu9NMpPJ47LUP7ggFIv4FLKZOzVldzJNZkS_vZlutSgiebgh93cOJxzGniOcIYB-nRERJAeBHFBIxc0DtsJaS16DaB-yFWCjuVIoTtiTnK8Bikw2j9mJrEG20DQrdnkR48TzSD70wVeb7bms6PuYKOcQhyrkKtHNHBJ1VR9T9fniwxcpK-en8M1Nt8RQrZPbhS6OudD5a_HLT9mj3u0zPbubp-zyzfmnzTu-_fj2_Wa95b6GduJKetOotkVj0EglhVHSGLUTOyw37MFordF4jyR07YmcxrZD15OXjeqEPGWvjr5jijcz5ckeQva037uB4pytaARo3RqsC_ryL_Q6zmko6RaqVigBzD115fZkw9DHKTm_mNq1BmlqaNrF6-wfVDkdHYKPA_WhvP8hEEeBTzHnRL0dUzi49MMi2KVLe-zSli7tbZd2yfLiLvG8O1D3W_KrvALII5DLariidP-l_9j-BMTNpPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625413009</pqid></control><display><type>article</type><title>Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Ma, Dichao ; Endo, Satoshi ; Betsuyaku, Eriko ; Fujiwara, Toru ; Betsuyaku, Shigeyuki ; Fukuda, Hiroo</creator><creatorcontrib>Ma, Dichao ; Endo, Satoshi ; Betsuyaku, Eriko ; Fujiwara, Toru ; Betsuyaku, Shigeyuki ; Fukuda, Hiroo</creatorcontrib><description>Key message This study focused on the role of CLE1–7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots. In the natural environment, plants employ diverse signaling molecules including peptides to defend themselves against various pathogen attacks. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED ( CLE ) genes ( CLE1–7 ) respond to biotic stimuli. CLE3 showed significant up-regulation upon treatment with flg22, Pep2, and salicylic acid (SA). Quantitative real-time PCR (qRT-PCR) analysis revealed that CLE3 expression is regulated by the NON-EXPRESSOR OF PR GENES1 ( NPR1 )-dependent SA signaling and flg22–FLAGELLIN-SENSITIVE 2 (FLS2) signaling pathways. We demonstrated that SA-induced up-regulation of CLE3 in roots was required for activation of WRKY33 , a gene involved in the regulation of systemic acquired resistance (SAR), in shoots, suggesting that CLE3 functions as a root-derived signal that regulates the expression of defense-related genes in shoots. Microarray analysis of transgenic Arabidopsis lines overexpressing CLE3 under the control of a β-estradiol-inducible promoter revealed that root-confined CLE3 overexpression affected gene expression in both roots and shoots. Comparison of CLE2 - and CLE3 -induced genes indicated that CLE2 and CLE3 peptides target a few common but largely distinct downstream genes. These results suggest that root-derived CLE3 is involved in the regulation of systemic rather than local immune responses. Our study also sheds light on the potential role of CLE peptides in long-distance regulation of plant immunity.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-021-01234-9</identifier><identifier>PMID: 35038066</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>17β-Estradiol ; Arabidopsis ; Arabidopsis - drug effects ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biochemistry ; Biomedical and Life Sciences ; DNA microarrays ; Down-Regulation ; Estradiol - pharmacology ; Estrogen ; Flagellin ; Gene expression ; Gene Expression Regulation, Developmental - drug effects ; Gene Expression Regulation, Developmental - physiology ; Gene Expression Regulation, Plant - drug effects ; Gene Expression Regulation, Plant - physiology ; Genetic engineering ; Immune response ; Intercellular Signaling Peptides and Proteins ; Life Sciences ; Natural environment ; Peptides ; Plant immunity ; Plant Pathology ; Plant Roots - genetics ; Plant Roots - metabolism ; Plant Sciences ; Plant Shoots - genetics ; Plant Shoots - metabolism ; Plants, Genetically Modified ; Roots ; Salicylic acid ; Salicylic Acid - pharmacology ; Seedlings - growth &amp; development ; Seedlings - metabolism ; Shoots ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Up-Regulation</subject><ispartof>Plant molecular biology, 2022-02, Vol.108 (3), p.225-239</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature B.V.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-43c96488199193432943994b2b19431f0977719cc1e275ceea718d1afec364d23</citedby><cites>FETCH-LOGICAL-c508t-43c96488199193432943994b2b19431f0977719cc1e275ceea718d1afec364d23</cites><orcidid>0000-0002-5363-6040 ; 0000-0001-8770-9407 ; 0000-0003-0824-3894 ; 0000-0002-8477-5553 ; 0000-0002-7824-9266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11103-021-01234-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11103-021-01234-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35038066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Dichao</creatorcontrib><creatorcontrib>Endo, Satoshi</creatorcontrib><creatorcontrib>Betsuyaku, Eriko</creatorcontrib><creatorcontrib>Fujiwara, Toru</creatorcontrib><creatorcontrib>Betsuyaku, Shigeyuki</creatorcontrib><creatorcontrib>Fukuda, Hiroo</creatorcontrib><title>Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><addtitle>Plant Mol Biol</addtitle><description>Key message This study focused on the role of CLE1–7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots. In the natural environment, plants employ diverse signaling molecules including peptides to defend themselves against various pathogen attacks. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED ( CLE ) genes ( CLE1–7 ) respond to biotic stimuli. CLE3 showed significant up-regulation upon treatment with flg22, Pep2, and salicylic acid (SA). Quantitative real-time PCR (qRT-PCR) analysis revealed that CLE3 expression is regulated by the NON-EXPRESSOR OF PR GENES1 ( NPR1 )-dependent SA signaling and flg22–FLAGELLIN-SENSITIVE 2 (FLS2) signaling pathways. We demonstrated that SA-induced up-regulation of CLE3 in roots was required for activation of WRKY33 , a gene involved in the regulation of systemic acquired resistance (SAR), in shoots, suggesting that CLE3 functions as a root-derived signal that regulates the expression of defense-related genes in shoots. Microarray analysis of transgenic Arabidopsis lines overexpressing CLE3 under the control of a β-estradiol-inducible promoter revealed that root-confined CLE3 overexpression affected gene expression in both roots and shoots. Comparison of CLE2 - and CLE3 -induced genes indicated that CLE2 and CLE3 peptides target a few common but largely distinct downstream genes. These results suggest that root-derived CLE3 is involved in the regulation of systemic rather than local immune responses. Our study also sheds light on the potential role of CLE peptides in long-distance regulation of plant immunity.</description><subject>17β-Estradiol</subject><subject>Arabidopsis</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>DNA microarrays</subject><subject>Down-Regulation</subject><subject>Estradiol - pharmacology</subject><subject>Estrogen</subject><subject>Flagellin</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Genetic engineering</subject><subject>Immune response</subject><subject>Intercellular Signaling Peptides and Proteins</subject><subject>Life Sciences</subject><subject>Natural environment</subject><subject>Peptides</subject><subject>Plant immunity</subject><subject>Plant Pathology</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - metabolism</subject><subject>Plant Sciences</subject><subject>Plant Shoots - genetics</subject><subject>Plant Shoots - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Roots</subject><subject>Salicylic acid</subject><subject>Salicylic Acid - pharmacology</subject><subject>Seedlings - growth &amp; development</subject><subject>Seedlings - metabolism</subject><subject>Shoots</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Up-Regulation</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV9rFDEUxYModq1-AR9kwBdfUu9NMpPJ47LUP7ggFIv4FLKZOzVldzJNZkS_vZlutSgiebgh93cOJxzGniOcIYB-nRERJAeBHFBIxc0DtsJaS16DaB-yFWCjuVIoTtiTnK8Bikw2j9mJrEG20DQrdnkR48TzSD70wVeb7bms6PuYKOcQhyrkKtHNHBJ1VR9T9fniwxcpK-en8M1Nt8RQrZPbhS6OudD5a_HLT9mj3u0zPbubp-zyzfmnzTu-_fj2_Wa95b6GduJKetOotkVj0EglhVHSGLUTOyw37MFordF4jyR07YmcxrZD15OXjeqEPGWvjr5jijcz5ckeQva037uB4pytaARo3RqsC_ryL_Q6zmko6RaqVigBzD115fZkw9DHKTm_mNq1BmlqaNrF6-wfVDkdHYKPA_WhvP8hEEeBTzHnRL0dUzi49MMi2KVLe-zSli7tbZd2yfLiLvG8O1D3W_KrvALII5DLariidP-l_9j-BMTNpPQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ma, Dichao</creator><creator>Endo, Satoshi</creator><creator>Betsuyaku, Eriko</creator><creator>Fujiwara, Toru</creator><creator>Betsuyaku, Shigeyuki</creator><creator>Fukuda, Hiroo</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5363-6040</orcidid><orcidid>https://orcid.org/0000-0001-8770-9407</orcidid><orcidid>https://orcid.org/0000-0003-0824-3894</orcidid><orcidid>https://orcid.org/0000-0002-8477-5553</orcidid><orcidid>https://orcid.org/0000-0002-7824-9266</orcidid></search><sort><creationdate>20220201</creationdate><title>Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots</title><author>Ma, Dichao ; Endo, Satoshi ; Betsuyaku, Eriko ; Fujiwara, Toru ; Betsuyaku, Shigeyuki ; Fukuda, Hiroo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-43c96488199193432943994b2b19431f0977719cc1e275ceea718d1afec364d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>17β-Estradiol</topic><topic>Arabidopsis</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>DNA microarrays</topic><topic>Down-Regulation</topic><topic>Estradiol - pharmacology</topic><topic>Estrogen</topic><topic>Flagellin</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Genetic engineering</topic><topic>Immune response</topic><topic>Intercellular Signaling Peptides and Proteins</topic><topic>Life Sciences</topic><topic>Natural environment</topic><topic>Peptides</topic><topic>Plant immunity</topic><topic>Plant Pathology</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - metabolism</topic><topic>Plant Sciences</topic><topic>Plant Shoots - genetics</topic><topic>Plant Shoots - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Roots</topic><topic>Salicylic acid</topic><topic>Salicylic Acid - pharmacology</topic><topic>Seedlings - growth &amp; development</topic><topic>Seedlings - metabolism</topic><topic>Shoots</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Dichao</creatorcontrib><creatorcontrib>Endo, Satoshi</creatorcontrib><creatorcontrib>Betsuyaku, Eriko</creatorcontrib><creatorcontrib>Fujiwara, Toru</creatorcontrib><creatorcontrib>Betsuyaku, Shigeyuki</creatorcontrib><creatorcontrib>Fukuda, Hiroo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Dichao</au><au>Endo, Satoshi</au><au>Betsuyaku, Eriko</au><au>Fujiwara, Toru</au><au>Betsuyaku, Shigeyuki</au><au>Fukuda, Hiroo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots</atitle><jtitle>Plant molecular biology</jtitle><stitle>Plant Mol Biol</stitle><addtitle>Plant Mol Biol</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>108</volume><issue>3</issue><spage>225</spage><epage>239</epage><pages>225-239</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>Key message This study focused on the role of CLE1–7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots. In the natural environment, plants employ diverse signaling molecules including peptides to defend themselves against various pathogen attacks. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED ( CLE ) genes ( CLE1–7 ) respond to biotic stimuli. CLE3 showed significant up-regulation upon treatment with flg22, Pep2, and salicylic acid (SA). Quantitative real-time PCR (qRT-PCR) analysis revealed that CLE3 expression is regulated by the NON-EXPRESSOR OF PR GENES1 ( NPR1 )-dependent SA signaling and flg22–FLAGELLIN-SENSITIVE 2 (FLS2) signaling pathways. We demonstrated that SA-induced up-regulation of CLE3 in roots was required for activation of WRKY33 , a gene involved in the regulation of systemic acquired resistance (SAR), in shoots, suggesting that CLE3 functions as a root-derived signal that regulates the expression of defense-related genes in shoots. Microarray analysis of transgenic Arabidopsis lines overexpressing CLE3 under the control of a β-estradiol-inducible promoter revealed that root-confined CLE3 overexpression affected gene expression in both roots and shoots. Comparison of CLE2 - and CLE3 -induced genes indicated that CLE2 and CLE3 peptides target a few common but largely distinct downstream genes. These results suggest that root-derived CLE3 is involved in the regulation of systemic rather than local immune responses. Our study also sheds light on the potential role of CLE peptides in long-distance regulation of plant immunity.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>35038066</pmid><doi>10.1007/s11103-021-01234-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5363-6040</orcidid><orcidid>https://orcid.org/0000-0001-8770-9407</orcidid><orcidid>https://orcid.org/0000-0003-0824-3894</orcidid><orcidid>https://orcid.org/0000-0002-8477-5553</orcidid><orcidid>https://orcid.org/0000-0002-7824-9266</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-4412
ispartof Plant molecular biology, 2022-02, Vol.108 (3), p.225-239
issn 0167-4412
1573-5028
language eng
recordid cdi_proquest_miscellaneous_2620778915
source MEDLINE; SpringerNature Journals
subjects 17β-Estradiol
Arabidopsis
Arabidopsis - drug effects
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biochemistry
Biomedical and Life Sciences
DNA microarrays
Down-Regulation
Estradiol - pharmacology
Estrogen
Flagellin
Gene expression
Gene Expression Regulation, Developmental - drug effects
Gene Expression Regulation, Developmental - physiology
Gene Expression Regulation, Plant - drug effects
Gene Expression Regulation, Plant - physiology
Genetic engineering
Immune response
Intercellular Signaling Peptides and Proteins
Life Sciences
Natural environment
Peptides
Plant immunity
Plant Pathology
Plant Roots - genetics
Plant Roots - metabolism
Plant Sciences
Plant Shoots - genetics
Plant Shoots - metabolism
Plants, Genetically Modified
Roots
Salicylic acid
Salicylic Acid - pharmacology
Seedlings - growth & development
Seedlings - metabolism
Shoots
Transcription Factors - genetics
Transcription Factors - metabolism
Up-Regulation
title Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Root-specific%20CLE3%20expression%20is%20required%20for%20WRKY33%20activation%20in%20Arabidopsis%20shoots&rft.jtitle=Plant%20molecular%20biology&rft.au=Ma,%20Dichao&rft.date=2022-02-01&rft.volume=108&rft.issue=3&rft.spage=225&rft.epage=239&rft.pages=225-239&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-021-01234-9&rft_dat=%3Cgale_proqu%3EA703950685%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625413009&rft_id=info:pmid/35038066&rft_galeid=A703950685&rfr_iscdi=true