Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots
Key message This study focused on the role of CLE1–7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots. In the natural environment, plants employ diverse signaling molecules including peptides to de...
Gespeichert in:
Veröffentlicht in: | Plant molecular biology 2022-02, Vol.108 (3), p.225-239 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 3 |
container_start_page | 225 |
container_title | Plant molecular biology |
container_volume | 108 |
creator | Ma, Dichao Endo, Satoshi Betsuyaku, Eriko Fujiwara, Toru Betsuyaku, Shigeyuki Fukuda, Hiroo |
description | Key message
This study focused on the role of CLE1–7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots.
In the natural environment, plants employ diverse signaling molecules including peptides to defend themselves against various pathogen attacks. In this study, we investigated whether
CLAVATA3/EMBRYO SURROUNDING REGION-RELATED
(
CLE
) genes (
CLE1–7
) respond to biotic stimuli.
CLE3
showed significant up-regulation upon treatment with flg22, Pep2, and salicylic acid (SA). Quantitative real-time PCR (qRT-PCR) analysis revealed that
CLE3
expression is regulated by the
NON-EXPRESSOR OF PR GENES1
(
NPR1
)-dependent SA signaling and flg22–FLAGELLIN-SENSITIVE 2 (FLS2) signaling pathways. We demonstrated that SA-induced up-regulation of
CLE3
in roots was required for activation of
WRKY33
, a gene involved in the regulation of systemic acquired resistance (SAR), in shoots, suggesting that CLE3 functions as a root-derived signal that regulates the expression of defense-related genes in shoots. Microarray analysis of transgenic Arabidopsis lines overexpressing
CLE3
under the control of a β-estradiol-inducible promoter revealed that root-confined
CLE3
overexpression affected gene expression in both roots and shoots. Comparison of
CLE2
- and
CLE3
-induced genes indicated that CLE2 and CLE3 peptides target a few common but largely distinct downstream genes. These results suggest that root-derived CLE3 is involved in the regulation of systemic rather than local immune responses. Our study also sheds light on the potential role of CLE peptides in long-distance regulation of plant immunity. |
doi_str_mv | 10.1007/s11103-021-01234-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2620778915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A703950685</galeid><sourcerecordid>A703950685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-43c96488199193432943994b2b19431f0977719cc1e275ceea718d1afec364d23</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYModq1-AR9kwBdfUu9NMpPJ47LUP7ggFIv4FLKZOzVldzJNZkS_vZlutSgiebgh93cOJxzGniOcIYB-nRERJAeBHFBIxc0DtsJaS16DaB-yFWCjuVIoTtiTnK8Bikw2j9mJrEG20DQrdnkR48TzSD70wVeb7bms6PuYKOcQhyrkKtHNHBJ1VR9T9fniwxcpK-en8M1Nt8RQrZPbhS6OudD5a_HLT9mj3u0zPbubp-zyzfmnzTu-_fj2_Wa95b6GduJKetOotkVj0EglhVHSGLUTOyw37MFordF4jyR07YmcxrZD15OXjeqEPGWvjr5jijcz5ckeQva037uB4pytaARo3RqsC_ryL_Q6zmko6RaqVigBzD115fZkw9DHKTm_mNq1BmlqaNrF6-wfVDkdHYKPA_WhvP8hEEeBTzHnRL0dUzi49MMi2KVLe-zSli7tbZd2yfLiLvG8O1D3W_KrvALII5DLariidP-l_9j-BMTNpPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625413009</pqid></control><display><type>article</type><title>Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Ma, Dichao ; Endo, Satoshi ; Betsuyaku, Eriko ; Fujiwara, Toru ; Betsuyaku, Shigeyuki ; Fukuda, Hiroo</creator><creatorcontrib>Ma, Dichao ; Endo, Satoshi ; Betsuyaku, Eriko ; Fujiwara, Toru ; Betsuyaku, Shigeyuki ; Fukuda, Hiroo</creatorcontrib><description>Key message
This study focused on the role of CLE1–7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots.
In the natural environment, plants employ diverse signaling molecules including peptides to defend themselves against various pathogen attacks. In this study, we investigated whether
CLAVATA3/EMBRYO SURROUNDING REGION-RELATED
(
CLE
) genes (
CLE1–7
) respond to biotic stimuli.
CLE3
showed significant up-regulation upon treatment with flg22, Pep2, and salicylic acid (SA). Quantitative real-time PCR (qRT-PCR) analysis revealed that
CLE3
expression is regulated by the
NON-EXPRESSOR OF PR GENES1
(
NPR1
)-dependent SA signaling and flg22–FLAGELLIN-SENSITIVE 2 (FLS2) signaling pathways. We demonstrated that SA-induced up-regulation of
CLE3
in roots was required for activation of
WRKY33
, a gene involved in the regulation of systemic acquired resistance (SAR), in shoots, suggesting that CLE3 functions as a root-derived signal that regulates the expression of defense-related genes in shoots. Microarray analysis of transgenic Arabidopsis lines overexpressing
CLE3
under the control of a β-estradiol-inducible promoter revealed that root-confined
CLE3
overexpression affected gene expression in both roots and shoots. Comparison of
CLE2
- and
CLE3
-induced genes indicated that CLE2 and CLE3 peptides target a few common but largely distinct downstream genes. These results suggest that root-derived CLE3 is involved in the regulation of systemic rather than local immune responses. Our study also sheds light on the potential role of CLE peptides in long-distance regulation of plant immunity.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-021-01234-9</identifier><identifier>PMID: 35038066</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>17β-Estradiol ; Arabidopsis ; Arabidopsis - drug effects ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biochemistry ; Biomedical and Life Sciences ; DNA microarrays ; Down-Regulation ; Estradiol - pharmacology ; Estrogen ; Flagellin ; Gene expression ; Gene Expression Regulation, Developmental - drug effects ; Gene Expression Regulation, Developmental - physiology ; Gene Expression Regulation, Plant - drug effects ; Gene Expression Regulation, Plant - physiology ; Genetic engineering ; Immune response ; Intercellular Signaling Peptides and Proteins ; Life Sciences ; Natural environment ; Peptides ; Plant immunity ; Plant Pathology ; Plant Roots - genetics ; Plant Roots - metabolism ; Plant Sciences ; Plant Shoots - genetics ; Plant Shoots - metabolism ; Plants, Genetically Modified ; Roots ; Salicylic acid ; Salicylic Acid - pharmacology ; Seedlings - growth & development ; Seedlings - metabolism ; Shoots ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Up-Regulation</subject><ispartof>Plant molecular biology, 2022-02, Vol.108 (3), p.225-239</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature B.V.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-43c96488199193432943994b2b19431f0977719cc1e275ceea718d1afec364d23</citedby><cites>FETCH-LOGICAL-c508t-43c96488199193432943994b2b19431f0977719cc1e275ceea718d1afec364d23</cites><orcidid>0000-0002-5363-6040 ; 0000-0001-8770-9407 ; 0000-0003-0824-3894 ; 0000-0002-8477-5553 ; 0000-0002-7824-9266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11103-021-01234-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11103-021-01234-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35038066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Dichao</creatorcontrib><creatorcontrib>Endo, Satoshi</creatorcontrib><creatorcontrib>Betsuyaku, Eriko</creatorcontrib><creatorcontrib>Fujiwara, Toru</creatorcontrib><creatorcontrib>Betsuyaku, Shigeyuki</creatorcontrib><creatorcontrib>Fukuda, Hiroo</creatorcontrib><title>Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><addtitle>Plant Mol Biol</addtitle><description>Key message
This study focused on the role of CLE1–7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots.
In the natural environment, plants employ diverse signaling molecules including peptides to defend themselves against various pathogen attacks. In this study, we investigated whether
CLAVATA3/EMBRYO SURROUNDING REGION-RELATED
(
CLE
) genes (
CLE1–7
) respond to biotic stimuli.
CLE3
showed significant up-regulation upon treatment with flg22, Pep2, and salicylic acid (SA). Quantitative real-time PCR (qRT-PCR) analysis revealed that
CLE3
expression is regulated by the
NON-EXPRESSOR OF PR GENES1
(
NPR1
)-dependent SA signaling and flg22–FLAGELLIN-SENSITIVE 2 (FLS2) signaling pathways. We demonstrated that SA-induced up-regulation of
CLE3
in roots was required for activation of
WRKY33
, a gene involved in the regulation of systemic acquired resistance (SAR), in shoots, suggesting that CLE3 functions as a root-derived signal that regulates the expression of defense-related genes in shoots. Microarray analysis of transgenic Arabidopsis lines overexpressing
CLE3
under the control of a β-estradiol-inducible promoter revealed that root-confined
CLE3
overexpression affected gene expression in both roots and shoots. Comparison of
CLE2
- and
CLE3
-induced genes indicated that CLE2 and CLE3 peptides target a few common but largely distinct downstream genes. These results suggest that root-derived CLE3 is involved in the regulation of systemic rather than local immune responses. Our study also sheds light on the potential role of CLE peptides in long-distance regulation of plant immunity.</description><subject>17β-Estradiol</subject><subject>Arabidopsis</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>DNA microarrays</subject><subject>Down-Regulation</subject><subject>Estradiol - pharmacology</subject><subject>Estrogen</subject><subject>Flagellin</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental - drug effects</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Genetic engineering</subject><subject>Immune response</subject><subject>Intercellular Signaling Peptides and Proteins</subject><subject>Life Sciences</subject><subject>Natural environment</subject><subject>Peptides</subject><subject>Plant immunity</subject><subject>Plant Pathology</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - metabolism</subject><subject>Plant Sciences</subject><subject>Plant Shoots - genetics</subject><subject>Plant Shoots - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Roots</subject><subject>Salicylic acid</subject><subject>Salicylic Acid - pharmacology</subject><subject>Seedlings - growth & development</subject><subject>Seedlings - metabolism</subject><subject>Shoots</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Up-Regulation</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV9rFDEUxYModq1-AR9kwBdfUu9NMpPJ47LUP7ggFIv4FLKZOzVldzJNZkS_vZlutSgiebgh93cOJxzGniOcIYB-nRERJAeBHFBIxc0DtsJaS16DaB-yFWCjuVIoTtiTnK8Bikw2j9mJrEG20DQrdnkR48TzSD70wVeb7bms6PuYKOcQhyrkKtHNHBJ1VR9T9fniwxcpK-en8M1Nt8RQrZPbhS6OudD5a_HLT9mj3u0zPbubp-zyzfmnzTu-_fj2_Wa95b6GduJKetOotkVj0EglhVHSGLUTOyw37MFordF4jyR07YmcxrZD15OXjeqEPGWvjr5jijcz5ckeQva037uB4pytaARo3RqsC_ryL_Q6zmko6RaqVigBzD115fZkw9DHKTm_mNq1BmlqaNrF6-wfVDkdHYKPA_WhvP8hEEeBTzHnRL0dUzi49MMi2KVLe-zSli7tbZd2yfLiLvG8O1D3W_KrvALII5DLariidP-l_9j-BMTNpPQ</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ma, Dichao</creator><creator>Endo, Satoshi</creator><creator>Betsuyaku, Eriko</creator><creator>Fujiwara, Toru</creator><creator>Betsuyaku, Shigeyuki</creator><creator>Fukuda, Hiroo</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5363-6040</orcidid><orcidid>https://orcid.org/0000-0001-8770-9407</orcidid><orcidid>https://orcid.org/0000-0003-0824-3894</orcidid><orcidid>https://orcid.org/0000-0002-8477-5553</orcidid><orcidid>https://orcid.org/0000-0002-7824-9266</orcidid></search><sort><creationdate>20220201</creationdate><title>Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots</title><author>Ma, Dichao ; Endo, Satoshi ; Betsuyaku, Eriko ; Fujiwara, Toru ; Betsuyaku, Shigeyuki ; Fukuda, Hiroo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-43c96488199193432943994b2b19431f0977719cc1e275ceea718d1afec364d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>17β-Estradiol</topic><topic>Arabidopsis</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>DNA microarrays</topic><topic>Down-Regulation</topic><topic>Estradiol - pharmacology</topic><topic>Estrogen</topic><topic>Flagellin</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental - drug effects</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Genetic engineering</topic><topic>Immune response</topic><topic>Intercellular Signaling Peptides and Proteins</topic><topic>Life Sciences</topic><topic>Natural environment</topic><topic>Peptides</topic><topic>Plant immunity</topic><topic>Plant Pathology</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - metabolism</topic><topic>Plant Sciences</topic><topic>Plant Shoots - genetics</topic><topic>Plant Shoots - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Roots</topic><topic>Salicylic acid</topic><topic>Salicylic Acid - pharmacology</topic><topic>Seedlings - growth & development</topic><topic>Seedlings - metabolism</topic><topic>Shoots</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Dichao</creatorcontrib><creatorcontrib>Endo, Satoshi</creatorcontrib><creatorcontrib>Betsuyaku, Eriko</creatorcontrib><creatorcontrib>Fujiwara, Toru</creatorcontrib><creatorcontrib>Betsuyaku, Shigeyuki</creatorcontrib><creatorcontrib>Fukuda, Hiroo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Dichao</au><au>Endo, Satoshi</au><au>Betsuyaku, Eriko</au><au>Fujiwara, Toru</au><au>Betsuyaku, Shigeyuki</au><au>Fukuda, Hiroo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots</atitle><jtitle>Plant molecular biology</jtitle><stitle>Plant Mol Biol</stitle><addtitle>Plant Mol Biol</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>108</volume><issue>3</issue><spage>225</spage><epage>239</epage><pages>225-239</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>Key message
This study focused on the role of CLE1–7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots.
In the natural environment, plants employ diverse signaling molecules including peptides to defend themselves against various pathogen attacks. In this study, we investigated whether
CLAVATA3/EMBRYO SURROUNDING REGION-RELATED
(
CLE
) genes (
CLE1–7
) respond to biotic stimuli.
CLE3
showed significant up-regulation upon treatment with flg22, Pep2, and salicylic acid (SA). Quantitative real-time PCR (qRT-PCR) analysis revealed that
CLE3
expression is regulated by the
NON-EXPRESSOR OF PR GENES1
(
NPR1
)-dependent SA signaling and flg22–FLAGELLIN-SENSITIVE 2 (FLS2) signaling pathways. We demonstrated that SA-induced up-regulation of
CLE3
in roots was required for activation of
WRKY33
, a gene involved in the regulation of systemic acquired resistance (SAR), in shoots, suggesting that CLE3 functions as a root-derived signal that regulates the expression of defense-related genes in shoots. Microarray analysis of transgenic Arabidopsis lines overexpressing
CLE3
under the control of a β-estradiol-inducible promoter revealed that root-confined
CLE3
overexpression affected gene expression in both roots and shoots. Comparison of
CLE2
- and
CLE3
-induced genes indicated that CLE2 and CLE3 peptides target a few common but largely distinct downstream genes. These results suggest that root-derived CLE3 is involved in the regulation of systemic rather than local immune responses. Our study also sheds light on the potential role of CLE peptides in long-distance regulation of plant immunity.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>35038066</pmid><doi>10.1007/s11103-021-01234-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5363-6040</orcidid><orcidid>https://orcid.org/0000-0001-8770-9407</orcidid><orcidid>https://orcid.org/0000-0003-0824-3894</orcidid><orcidid>https://orcid.org/0000-0002-8477-5553</orcidid><orcidid>https://orcid.org/0000-0002-7824-9266</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4412 |
ispartof | Plant molecular biology, 2022-02, Vol.108 (3), p.225-239 |
issn | 0167-4412 1573-5028 |
language | eng |
recordid | cdi_proquest_miscellaneous_2620778915 |
source | MEDLINE; SpringerNature Journals |
subjects | 17β-Estradiol Arabidopsis Arabidopsis - drug effects Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biochemistry Biomedical and Life Sciences DNA microarrays Down-Regulation Estradiol - pharmacology Estrogen Flagellin Gene expression Gene Expression Regulation, Developmental - drug effects Gene Expression Regulation, Developmental - physiology Gene Expression Regulation, Plant - drug effects Gene Expression Regulation, Plant - physiology Genetic engineering Immune response Intercellular Signaling Peptides and Proteins Life Sciences Natural environment Peptides Plant immunity Plant Pathology Plant Roots - genetics Plant Roots - metabolism Plant Sciences Plant Shoots - genetics Plant Shoots - metabolism Plants, Genetically Modified Roots Salicylic acid Salicylic Acid - pharmacology Seedlings - growth & development Seedlings - metabolism Shoots Transcription Factors - genetics Transcription Factors - metabolism Up-Regulation |
title | Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Root-specific%20CLE3%20expression%20is%20required%20for%20WRKY33%20activation%20in%20Arabidopsis%20shoots&rft.jtitle=Plant%20molecular%20biology&rft.au=Ma,%20Dichao&rft.date=2022-02-01&rft.volume=108&rft.issue=3&rft.spage=225&rft.epage=239&rft.pages=225-239&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-021-01234-9&rft_dat=%3Cgale_proqu%3EA703950685%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625413009&rft_id=info:pmid/35038066&rft_galeid=A703950685&rfr_iscdi=true |