Scale‐up issues for commercial depth filters in bioprocessing

Significant increases in cell density and product titer have led to renewed interest in the application of depth filtration for initial clarification of cell culture fluid in antibody production. The performance of these depth filters will depend on the local pressure and velocity distribution withi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2022-04, Vol.119 (4), p.1105-1114
Hauptverfasser: Nejatishahidein, Negin, Kim, Minyoung, Jung, Seon Y., Borujeni, Ehsan E., Fernandez‐Cerezo, Lara, Roush, David J., Borhan, Ali, Zydney, Andrew L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1114
container_issue 4
container_start_page 1105
container_title Biotechnology and bioengineering
container_volume 119
creator Nejatishahidein, Negin
Kim, Minyoung
Jung, Seon Y.
Borujeni, Ehsan E.
Fernandez‐Cerezo, Lara
Roush, David J.
Borhan, Ali
Zydney, Andrew L.
description Significant increases in cell density and product titer have led to renewed interest in the application of depth filtration for initial clarification of cell culture fluid in antibody production. The performance of these depth filters will depend on the local pressure and velocity distribution within the filter capsule, but these are very difficult to probe experimentally, leading to challenges in both process design and scale‐up. We have used a combination of carefully designed experimental studies and computational fluid dynamics (CFD) to examine these issues in both lab‐scale (SupracapTM 50) and pilot‐scale (StaxTM) depth filter modules, both employing dual‐layer lenticular PDH4 media containing diatomaceous earth. The SupracapTM 50 showed a more rapid increase in transmembrane pressure and a more rapid DNA breakthrough during filtration of a Chinese Hamster Ovary cell culture fluid. These results were explained using CFD calculations which showed very different flow distributions within the modules. CFD predictions were further validated using measurements of the residence time distribution and dye binding in both the lab‐scale and pilot‐plant modules. These results provide important insights into the factors controlling the performance and scale‐up of these commercially important depth filters as well as a framework that can be broadly applied to develop more effective depth filters and depth filtration processes. The authors evaluated the performance characteristics for both lab‐and pilot‐scale depth filtration modules for Chinese Hamster Ovary (CHO) cell clarification. The pilot‐scale module showed greater capacity and DNA removal due to more uniform flow distribution, which was verified by computational fluid dynamics, residence time distribution, and dye‐binding studies.
doi_str_mv 10.1002/bit.28035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2620088690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620088690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-7117147794eae25358ec681352ec1758fc6fbb8bbce4cd28f4f6aed5018863523</originalsourceid><addsrcrecordid>eNp10M1Kw0AQB_BFFFurB19AAl70kHZ2N5tsTqLFj0LBg_Ucks1Et-TL3QTpzUfwGX0SV1M9CJ6GgR__Gf6EHFOYUgA2y3Q3ZRK42CFjCnHkA4thl4wBIPS5iNmIHFi7dmskw3CfjLgAzoBFY3LxoNISP97e-9bT1vZovaIxnmqqCo3Saenl2HbPXqHLDo31dO1lumlNo9BaXT8dkr0iLS0ebeeEPN5cr-Z3_vL-djG_XPqKSyn8iNKIBlEUB5giE1xIVKGkXDBUNBKyUGGRZTLLFAYqZ7IIijDFXACVMnSKT8jZkOtOv7gvu6TSVmFZpjU2vU1YyACcjcHR0z903fSmdt85xV0DnAbcqfNBKdNYa7BIWqOr1GwSCslXq4lrNflu1dmTbWKfVZj_yp8aHZgN4FWXuPk_KblarIbIT6akgEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637863143</pqid></control><display><type>article</type><title>Scale‐up issues for commercial depth filters in bioprocessing</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Nejatishahidein, Negin ; Kim, Minyoung ; Jung, Seon Y. ; Borujeni, Ehsan E. ; Fernandez‐Cerezo, Lara ; Roush, David J. ; Borhan, Ali ; Zydney, Andrew L.</creator><creatorcontrib>Nejatishahidein, Negin ; Kim, Minyoung ; Jung, Seon Y. ; Borujeni, Ehsan E. ; Fernandez‐Cerezo, Lara ; Roush, David J. ; Borhan, Ali ; Zydney, Andrew L.</creatorcontrib><description>Significant increases in cell density and product titer have led to renewed interest in the application of depth filtration for initial clarification of cell culture fluid in antibody production. The performance of these depth filters will depend on the local pressure and velocity distribution within the filter capsule, but these are very difficult to probe experimentally, leading to challenges in both process design and scale‐up. We have used a combination of carefully designed experimental studies and computational fluid dynamics (CFD) to examine these issues in both lab‐scale (SupracapTM 50) and pilot‐scale (StaxTM) depth filter modules, both employing dual‐layer lenticular PDH4 media containing diatomaceous earth. The SupracapTM 50 showed a more rapid increase in transmembrane pressure and a more rapid DNA breakthrough during filtration of a Chinese Hamster Ovary cell culture fluid. These results were explained using CFD calculations which showed very different flow distributions within the modules. CFD predictions were further validated using measurements of the residence time distribution and dye binding in both the lab‐scale and pilot‐plant modules. These results provide important insights into the factors controlling the performance and scale‐up of these commercially important depth filters as well as a framework that can be broadly applied to develop more effective depth filters and depth filtration processes. The authors evaluated the performance characteristics for both lab‐and pilot‐scale depth filtration modules for Chinese Hamster Ovary (CHO) cell clarification. The pilot‐scale module showed greater capacity and DNA removal due to more uniform flow distribution, which was verified by computational fluid dynamics, residence time distribution, and dye‐binding studies.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.28035</identifier><identifier>PMID: 35032027</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Antibodies ; Bioprocessing ; Cell Count ; Cell culture ; Cell Culture Techniques - methods ; Cell density ; CFD ; CHO Cells ; clarification ; Computational fluid dynamics ; Computer applications ; Cricetinae ; Cricetulus ; depth filtration ; Diatomaceous earth ; DNA damage ; Filters ; Filtration ; Filtration - methods ; flow distribution ; Fluid dynamics ; Fluid filters ; Hydrodynamics ; lenticular stack ; Modules ; Residence time distribution ; scale‐up ; Velocity distribution</subject><ispartof>Biotechnology and bioengineering, 2022-04, Vol.119 (4), p.1105-1114</ispartof><rights>2022 Wiley Periodicals LLC</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-7117147794eae25358ec681352ec1758fc6fbb8bbce4cd28f4f6aed5018863523</citedby><cites>FETCH-LOGICAL-c3885-7117147794eae25358ec681352ec1758fc6fbb8bbce4cd28f4f6aed5018863523</cites><orcidid>0000-0001-8841-7043 ; 0000-0003-4690-0971 ; 0000-0001-7266-1084 ; 0000-0003-1865-9156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.28035$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.28035$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35032027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nejatishahidein, Negin</creatorcontrib><creatorcontrib>Kim, Minyoung</creatorcontrib><creatorcontrib>Jung, Seon Y.</creatorcontrib><creatorcontrib>Borujeni, Ehsan E.</creatorcontrib><creatorcontrib>Fernandez‐Cerezo, Lara</creatorcontrib><creatorcontrib>Roush, David J.</creatorcontrib><creatorcontrib>Borhan, Ali</creatorcontrib><creatorcontrib>Zydney, Andrew L.</creatorcontrib><title>Scale‐up issues for commercial depth filters in bioprocessing</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Significant increases in cell density and product titer have led to renewed interest in the application of depth filtration for initial clarification of cell culture fluid in antibody production. The performance of these depth filters will depend on the local pressure and velocity distribution within the filter capsule, but these are very difficult to probe experimentally, leading to challenges in both process design and scale‐up. We have used a combination of carefully designed experimental studies and computational fluid dynamics (CFD) to examine these issues in both lab‐scale (SupracapTM 50) and pilot‐scale (StaxTM) depth filter modules, both employing dual‐layer lenticular PDH4 media containing diatomaceous earth. The SupracapTM 50 showed a more rapid increase in transmembrane pressure and a more rapid DNA breakthrough during filtration of a Chinese Hamster Ovary cell culture fluid. These results were explained using CFD calculations which showed very different flow distributions within the modules. CFD predictions were further validated using measurements of the residence time distribution and dye binding in both the lab‐scale and pilot‐plant modules. These results provide important insights into the factors controlling the performance and scale‐up of these commercially important depth filters as well as a framework that can be broadly applied to develop more effective depth filters and depth filtration processes. The authors evaluated the performance characteristics for both lab‐and pilot‐scale depth filtration modules for Chinese Hamster Ovary (CHO) cell clarification. The pilot‐scale module showed greater capacity and DNA removal due to more uniform flow distribution, which was verified by computational fluid dynamics, residence time distribution, and dye‐binding studies.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Bioprocessing</subject><subject>Cell Count</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell density</subject><subject>CFD</subject><subject>CHO Cells</subject><subject>clarification</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>depth filtration</subject><subject>Diatomaceous earth</subject><subject>DNA damage</subject><subject>Filters</subject><subject>Filtration</subject><subject>Filtration - methods</subject><subject>flow distribution</subject><subject>Fluid dynamics</subject><subject>Fluid filters</subject><subject>Hydrodynamics</subject><subject>lenticular stack</subject><subject>Modules</subject><subject>Residence time distribution</subject><subject>scale‐up</subject><subject>Velocity distribution</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10M1Kw0AQB_BFFFurB19AAl70kHZ2N5tsTqLFj0LBg_Ucks1Et-TL3QTpzUfwGX0SV1M9CJ6GgR__Gf6EHFOYUgA2y3Q3ZRK42CFjCnHkA4thl4wBIPS5iNmIHFi7dmskw3CfjLgAzoBFY3LxoNISP97e-9bT1vZovaIxnmqqCo3Saenl2HbPXqHLDo31dO1lumlNo9BaXT8dkr0iLS0ebeeEPN5cr-Z3_vL-djG_XPqKSyn8iNKIBlEUB5giE1xIVKGkXDBUNBKyUGGRZTLLFAYqZ7IIijDFXACVMnSKT8jZkOtOv7gvu6TSVmFZpjU2vU1YyACcjcHR0z903fSmdt85xV0DnAbcqfNBKdNYa7BIWqOr1GwSCslXq4lrNflu1dmTbWKfVZj_yp8aHZgN4FWXuPk_KblarIbIT6akgEg</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Nejatishahidein, Negin</creator><creator>Kim, Minyoung</creator><creator>Jung, Seon Y.</creator><creator>Borujeni, Ehsan E.</creator><creator>Fernandez‐Cerezo, Lara</creator><creator>Roush, David J.</creator><creator>Borhan, Ali</creator><creator>Zydney, Andrew L.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8841-7043</orcidid><orcidid>https://orcid.org/0000-0003-4690-0971</orcidid><orcidid>https://orcid.org/0000-0001-7266-1084</orcidid><orcidid>https://orcid.org/0000-0003-1865-9156</orcidid></search><sort><creationdate>202204</creationdate><title>Scale‐up issues for commercial depth filters in bioprocessing</title><author>Nejatishahidein, Negin ; Kim, Minyoung ; Jung, Seon Y. ; Borujeni, Ehsan E. ; Fernandez‐Cerezo, Lara ; Roush, David J. ; Borhan, Ali ; Zydney, Andrew L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-7117147794eae25358ec681352ec1758fc6fbb8bbce4cd28f4f6aed5018863523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Bioprocessing</topic><topic>Cell Count</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell density</topic><topic>CFD</topic><topic>CHO Cells</topic><topic>clarification</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>depth filtration</topic><topic>Diatomaceous earth</topic><topic>DNA damage</topic><topic>Filters</topic><topic>Filtration</topic><topic>Filtration - methods</topic><topic>flow distribution</topic><topic>Fluid dynamics</topic><topic>Fluid filters</topic><topic>Hydrodynamics</topic><topic>lenticular stack</topic><topic>Modules</topic><topic>Residence time distribution</topic><topic>scale‐up</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nejatishahidein, Negin</creatorcontrib><creatorcontrib>Kim, Minyoung</creatorcontrib><creatorcontrib>Jung, Seon Y.</creatorcontrib><creatorcontrib>Borujeni, Ehsan E.</creatorcontrib><creatorcontrib>Fernandez‐Cerezo, Lara</creatorcontrib><creatorcontrib>Roush, David J.</creatorcontrib><creatorcontrib>Borhan, Ali</creatorcontrib><creatorcontrib>Zydney, Andrew L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nejatishahidein, Negin</au><au>Kim, Minyoung</au><au>Jung, Seon Y.</au><au>Borujeni, Ehsan E.</au><au>Fernandez‐Cerezo, Lara</au><au>Roush, David J.</au><au>Borhan, Ali</au><au>Zydney, Andrew L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scale‐up issues for commercial depth filters in bioprocessing</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2022-04</date><risdate>2022</risdate><volume>119</volume><issue>4</issue><spage>1105</spage><epage>1114</epage><pages>1105-1114</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Significant increases in cell density and product titer have led to renewed interest in the application of depth filtration for initial clarification of cell culture fluid in antibody production. The performance of these depth filters will depend on the local pressure and velocity distribution within the filter capsule, but these are very difficult to probe experimentally, leading to challenges in both process design and scale‐up. We have used a combination of carefully designed experimental studies and computational fluid dynamics (CFD) to examine these issues in both lab‐scale (SupracapTM 50) and pilot‐scale (StaxTM) depth filter modules, both employing dual‐layer lenticular PDH4 media containing diatomaceous earth. The SupracapTM 50 showed a more rapid increase in transmembrane pressure and a more rapid DNA breakthrough during filtration of a Chinese Hamster Ovary cell culture fluid. These results were explained using CFD calculations which showed very different flow distributions within the modules. CFD predictions were further validated using measurements of the residence time distribution and dye binding in both the lab‐scale and pilot‐plant modules. These results provide important insights into the factors controlling the performance and scale‐up of these commercially important depth filters as well as a framework that can be broadly applied to develop more effective depth filters and depth filtration processes. The authors evaluated the performance characteristics for both lab‐and pilot‐scale depth filtration modules for Chinese Hamster Ovary (CHO) cell clarification. The pilot‐scale module showed greater capacity and DNA removal due to more uniform flow distribution, which was verified by computational fluid dynamics, residence time distribution, and dye‐binding studies.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35032027</pmid><doi>10.1002/bit.28035</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8841-7043</orcidid><orcidid>https://orcid.org/0000-0003-4690-0971</orcidid><orcidid>https://orcid.org/0000-0001-7266-1084</orcidid><orcidid>https://orcid.org/0000-0003-1865-9156</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2022-04, Vol.119 (4), p.1105-1114
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_2620088690
source MEDLINE; Access via Wiley Online Library
subjects Animals
Antibodies
Bioprocessing
Cell Count
Cell culture
Cell Culture Techniques - methods
Cell density
CFD
CHO Cells
clarification
Computational fluid dynamics
Computer applications
Cricetinae
Cricetulus
depth filtration
Diatomaceous earth
DNA damage
Filters
Filtration
Filtration - methods
flow distribution
Fluid dynamics
Fluid filters
Hydrodynamics
lenticular stack
Modules
Residence time distribution
scale‐up
Velocity distribution
title Scale‐up issues for commercial depth filters in bioprocessing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scale%E2%80%90up%20issues%20for%20commercial%20depth%20filters%20in%20bioprocessing&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Nejatishahidein,%20Negin&rft.date=2022-04&rft.volume=119&rft.issue=4&rft.spage=1105&rft.epage=1114&rft.pages=1105-1114&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.28035&rft_dat=%3Cproquest_cross%3E2620088690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637863143&rft_id=info:pmid/35032027&rfr_iscdi=true