Calibrationless multi‐slice Cartesian MRI via orthogonally alternating phase encoding direction and joint low‐rank tensor completion
We propose a multi‐slice acquisition with orthogonally alternating phase encoding (PE) direction and subsequent joint calibrationless reconstruction for accelerated multiple individual 2D slices or multi‐slice 2D Cartesian MRI. Specifically, multi‐slice multi‐channel data are first acquired with ran...
Gespeichert in:
Veröffentlicht in: | NMR in biomedicine 2022-07, Vol.35 (7), p.e4695-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | e4695 |
container_title | NMR in biomedicine |
container_volume | 35 |
creator | Zhao, Yujiao Yi, Zheyuan Liu, Yilong Chen, Fei Xiao, Linfang Leong, Alex T. L. Wu, Ed X. |
description | We propose a multi‐slice acquisition with orthogonally alternating phase encoding (PE) direction and subsequent joint calibrationless reconstruction for accelerated multiple individual 2D slices or multi‐slice 2D Cartesian MRI. Specifically, multi‐slice multi‐channel data are first acquired with random or uniform PE undersampling while orthogonally alternating PE direction between adjacent slices. They are then jointly reconstructed through a recently developed low‐rank multi‐slice Hankel tensor completion (MS‐HTC) approach. The proposed acquisition and reconstruction strategy was evaluated with human brain MR data. It effectively suppressed aliasing artifacts even at high acceleration factor, outperforming the existing MS‐HTC approach, where PE direction is the same between adjacent slices. More importantly, the new strategy worked robustly with uniform undersampling or random undersampling without any consecutive central k‐space lines. In summary, our proposed multi‐slice MRI strategy exploits both coil sensitivity and image content similarities across adjacent slices. Orthogonally alternating PE direction among slices substantially facilitates the low‐rank completion process and improves image reconstruction quality. This new strategy is applicable to uniform and random PE undersampling. It can be easily implemented in practice for Cartesian parallel imaging of multiple individual 2D slices without any coil sensitivity calibration.
We propose a multi‐slice acquisition with alternating phase encoding direction and subsequent joint calibrationless reconstruction for accelerated 2D Cartesian MRI. This strategy effectively suppresses aliasing artifacts, and works robustly with both random and uniform undersampling, outperforming the existing multi‐slice joint reconstruction approach, where the PE direction is the same between adjacent slices. |
doi_str_mv | 10.1002/nbm.4695 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2620087496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676384846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3495-fdd4d06ed5bf2d0c580c8661ada44ef84d25ea2a522977896353513cba3552543</originalsourceid><addsrcrecordid>eNp1kU1LHEEQhhuJ6GYT8BdIQy5eRnv6Yz6OyaJG0AiSnIea7hrtTU_3pntG2ZtHj_mN-SWZiSaBQE5FwfM-UPUScpCz45wxfuLb_lgWtdohi5zVdZbLmr8iC1YrnglZsX3yOqU1Y6ySgu-RfaGY4KzkC_K0AmfbCIMN3mFKtB_dYH88fk_OaqQriAMmC55e3VzQews0xOEu3AYPzm0puAGjn8L-lm7uICFFr4OZV2Mj6tlKwRu6DtYP1IWHyRzBf6UD-hQi1aHfOJyxN2S3A5fw7ctcki9np59XH7PL6_OL1fvLTAtZq6wzRhpWoFFtxw3TqmK6KoocDEiJXSUNVwgcFOd1WVZ1IZRQudAtCKW4kmJJjp69mxi-jZiGprdJo3PgMYyp4QWf3lTKKbkk7_5B12GcznUzVRaikpUs_gp1DClF7JpNtD3EbZOzZm6nmdpp5nYm9PBFOLY9mj_g7zomIHsGHqzD7X9FzacPV7-EPwHtSJyZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676384846</pqid></control><display><type>article</type><title>Calibrationless multi‐slice Cartesian MRI via orthogonally alternating phase encoding direction and joint low‐rank tensor completion</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Zhao, Yujiao ; Yi, Zheyuan ; Liu, Yilong ; Chen, Fei ; Xiao, Linfang ; Leong, Alex T. L. ; Wu, Ed X.</creator><creatorcontrib>Zhao, Yujiao ; Yi, Zheyuan ; Liu, Yilong ; Chen, Fei ; Xiao, Linfang ; Leong, Alex T. L. ; Wu, Ed X.</creatorcontrib><description>We propose a multi‐slice acquisition with orthogonally alternating phase encoding (PE) direction and subsequent joint calibrationless reconstruction for accelerated multiple individual 2D slices or multi‐slice 2D Cartesian MRI. Specifically, multi‐slice multi‐channel data are first acquired with random or uniform PE undersampling while orthogonally alternating PE direction between adjacent slices. They are then jointly reconstructed through a recently developed low‐rank multi‐slice Hankel tensor completion (MS‐HTC) approach. The proposed acquisition and reconstruction strategy was evaluated with human brain MR data. It effectively suppressed aliasing artifacts even at high acceleration factor, outperforming the existing MS‐HTC approach, where PE direction is the same between adjacent slices. More importantly, the new strategy worked robustly with uniform undersampling or random undersampling without any consecutive central k‐space lines. In summary, our proposed multi‐slice MRI strategy exploits both coil sensitivity and image content similarities across adjacent slices. Orthogonally alternating PE direction among slices substantially facilitates the low‐rank completion process and improves image reconstruction quality. This new strategy is applicable to uniform and random PE undersampling. It can be easily implemented in practice for Cartesian parallel imaging of multiple individual 2D slices without any coil sensitivity calibration.
We propose a multi‐slice acquisition with alternating phase encoding direction and subsequent joint calibrationless reconstruction for accelerated 2D Cartesian MRI. This strategy effectively suppresses aliasing artifacts, and works robustly with both random and uniform undersampling, outperforming the existing multi‐slice joint reconstruction approach, where the PE direction is the same between adjacent slices.</description><identifier>ISSN: 0952-3480</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.4695</identifier><identifier>PMID: 35032072</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Biological products ; Brain - diagnostic imaging ; Calibration ; calibrationless parallel imaging ; Cartesian coordinates ; Data acquisition ; High acceleration ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image quality ; Image reconstruction ; low‐rank tensor completion ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mathematical analysis ; Medical imaging ; multi‐slice phase encoding direction alternation ; Neuroimaging ; random undersampling ; Sensitivity ; Tensors ; uniform undersampling</subject><ispartof>NMR in biomedicine, 2022-07, Vol.35 (7), p.e4695-n/a</ispartof><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3495-fdd4d06ed5bf2d0c580c8661ada44ef84d25ea2a522977896353513cba3552543</citedby><cites>FETCH-LOGICAL-c3495-fdd4d06ed5bf2d0c580c8661ada44ef84d25ea2a522977896353513cba3552543</cites><orcidid>0000-0001-5581-1546 ; 0000-0001-9295-7982 ; 0000-0003-1633-0445 ; 0000-0001-8063-887X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnbm.4695$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnbm.4695$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35032072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yujiao</creatorcontrib><creatorcontrib>Yi, Zheyuan</creatorcontrib><creatorcontrib>Liu, Yilong</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Xiao, Linfang</creatorcontrib><creatorcontrib>Leong, Alex T. L.</creatorcontrib><creatorcontrib>Wu, Ed X.</creatorcontrib><title>Calibrationless multi‐slice Cartesian MRI via orthogonally alternating phase encoding direction and joint low‐rank tensor completion</title><title>NMR in biomedicine</title><addtitle>NMR Biomed</addtitle><description>We propose a multi‐slice acquisition with orthogonally alternating phase encoding (PE) direction and subsequent joint calibrationless reconstruction for accelerated multiple individual 2D slices or multi‐slice 2D Cartesian MRI. Specifically, multi‐slice multi‐channel data are first acquired with random or uniform PE undersampling while orthogonally alternating PE direction between adjacent slices. They are then jointly reconstructed through a recently developed low‐rank multi‐slice Hankel tensor completion (MS‐HTC) approach. The proposed acquisition and reconstruction strategy was evaluated with human brain MR data. It effectively suppressed aliasing artifacts even at high acceleration factor, outperforming the existing MS‐HTC approach, where PE direction is the same between adjacent slices. More importantly, the new strategy worked robustly with uniform undersampling or random undersampling without any consecutive central k‐space lines. In summary, our proposed multi‐slice MRI strategy exploits both coil sensitivity and image content similarities across adjacent slices. Orthogonally alternating PE direction among slices substantially facilitates the low‐rank completion process and improves image reconstruction quality. This new strategy is applicable to uniform and random PE undersampling. It can be easily implemented in practice for Cartesian parallel imaging of multiple individual 2D slices without any coil sensitivity calibration.
We propose a multi‐slice acquisition with alternating phase encoding direction and subsequent joint calibrationless reconstruction for accelerated 2D Cartesian MRI. This strategy effectively suppresses aliasing artifacts, and works robustly with both random and uniform undersampling, outperforming the existing multi‐slice joint reconstruction approach, where the PE direction is the same between adjacent slices.</description><subject>Algorithms</subject><subject>Biological products</subject><subject>Brain - diagnostic imaging</subject><subject>Calibration</subject><subject>calibrationless parallel imaging</subject><subject>Cartesian coordinates</subject><subject>Data acquisition</subject><subject>High acceleration</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>low‐rank tensor completion</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical analysis</subject><subject>Medical imaging</subject><subject>multi‐slice phase encoding direction alternation</subject><subject>Neuroimaging</subject><subject>random undersampling</subject><subject>Sensitivity</subject><subject>Tensors</subject><subject>uniform undersampling</subject><issn>0952-3480</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1LHEEQhhuJ6GYT8BdIQy5eRnv6Yz6OyaJG0AiSnIea7hrtTU_3pntG2ZtHj_mN-SWZiSaBQE5FwfM-UPUScpCz45wxfuLb_lgWtdohi5zVdZbLmr8iC1YrnglZsX3yOqU1Y6ySgu-RfaGY4KzkC_K0AmfbCIMN3mFKtB_dYH88fk_OaqQriAMmC55e3VzQews0xOEu3AYPzm0puAGjn8L-lm7uICFFr4OZV2Mj6tlKwRu6DtYP1IWHyRzBf6UD-hQi1aHfOJyxN2S3A5fw7ctcki9np59XH7PL6_OL1fvLTAtZq6wzRhpWoFFtxw3TqmK6KoocDEiJXSUNVwgcFOd1WVZ1IZRQudAtCKW4kmJJjp69mxi-jZiGprdJo3PgMYyp4QWf3lTKKbkk7_5B12GcznUzVRaikpUs_gp1DClF7JpNtD3EbZOzZm6nmdpp5nYm9PBFOLY9mj_g7zomIHsGHqzD7X9FzacPV7-EPwHtSJyZ</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Zhao, Yujiao</creator><creator>Yi, Zheyuan</creator><creator>Liu, Yilong</creator><creator>Chen, Fei</creator><creator>Xiao, Linfang</creator><creator>Leong, Alex T. L.</creator><creator>Wu, Ed X.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5581-1546</orcidid><orcidid>https://orcid.org/0000-0001-9295-7982</orcidid><orcidid>https://orcid.org/0000-0003-1633-0445</orcidid><orcidid>https://orcid.org/0000-0001-8063-887X</orcidid></search><sort><creationdate>202207</creationdate><title>Calibrationless multi‐slice Cartesian MRI via orthogonally alternating phase encoding direction and joint low‐rank tensor completion</title><author>Zhao, Yujiao ; Yi, Zheyuan ; Liu, Yilong ; Chen, Fei ; Xiao, Linfang ; Leong, Alex T. L. ; Wu, Ed X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3495-fdd4d06ed5bf2d0c580c8661ada44ef84d25ea2a522977896353513cba3552543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biological products</topic><topic>Brain - diagnostic imaging</topic><topic>Calibration</topic><topic>calibrationless parallel imaging</topic><topic>Cartesian coordinates</topic><topic>Data acquisition</topic><topic>High acceleration</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>low‐rank tensor completion</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical analysis</topic><topic>Medical imaging</topic><topic>multi‐slice phase encoding direction alternation</topic><topic>Neuroimaging</topic><topic>random undersampling</topic><topic>Sensitivity</topic><topic>Tensors</topic><topic>uniform undersampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yujiao</creatorcontrib><creatorcontrib>Yi, Zheyuan</creatorcontrib><creatorcontrib>Liu, Yilong</creatorcontrib><creatorcontrib>Chen, Fei</creatorcontrib><creatorcontrib>Xiao, Linfang</creatorcontrib><creatorcontrib>Leong, Alex T. L.</creatorcontrib><creatorcontrib>Wu, Ed X.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yujiao</au><au>Yi, Zheyuan</au><au>Liu, Yilong</au><au>Chen, Fei</au><au>Xiao, Linfang</au><au>Leong, Alex T. L.</au><au>Wu, Ed X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibrationless multi‐slice Cartesian MRI via orthogonally alternating phase encoding direction and joint low‐rank tensor completion</atitle><jtitle>NMR in biomedicine</jtitle><addtitle>NMR Biomed</addtitle><date>2022-07</date><risdate>2022</risdate><volume>35</volume><issue>7</issue><spage>e4695</spage><epage>n/a</epage><pages>e4695-n/a</pages><issn>0952-3480</issn><eissn>1099-1492</eissn><abstract>We propose a multi‐slice acquisition with orthogonally alternating phase encoding (PE) direction and subsequent joint calibrationless reconstruction for accelerated multiple individual 2D slices or multi‐slice 2D Cartesian MRI. Specifically, multi‐slice multi‐channel data are first acquired with random or uniform PE undersampling while orthogonally alternating PE direction between adjacent slices. They are then jointly reconstructed through a recently developed low‐rank multi‐slice Hankel tensor completion (MS‐HTC) approach. The proposed acquisition and reconstruction strategy was evaluated with human brain MR data. It effectively suppressed aliasing artifacts even at high acceleration factor, outperforming the existing MS‐HTC approach, where PE direction is the same between adjacent slices. More importantly, the new strategy worked robustly with uniform undersampling or random undersampling without any consecutive central k‐space lines. In summary, our proposed multi‐slice MRI strategy exploits both coil sensitivity and image content similarities across adjacent slices. Orthogonally alternating PE direction among slices substantially facilitates the low‐rank completion process and improves image reconstruction quality. This new strategy is applicable to uniform and random PE undersampling. It can be easily implemented in practice for Cartesian parallel imaging of multiple individual 2D slices without any coil sensitivity calibration.
We propose a multi‐slice acquisition with alternating phase encoding direction and subsequent joint calibrationless reconstruction for accelerated 2D Cartesian MRI. This strategy effectively suppresses aliasing artifacts, and works robustly with both random and uniform undersampling, outperforming the existing multi‐slice joint reconstruction approach, where the PE direction is the same between adjacent slices.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35032072</pmid><doi>10.1002/nbm.4695</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5581-1546</orcidid><orcidid>https://orcid.org/0000-0001-9295-7982</orcidid><orcidid>https://orcid.org/0000-0003-1633-0445</orcidid><orcidid>https://orcid.org/0000-0001-8063-887X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-3480 |
ispartof | NMR in biomedicine, 2022-07, Vol.35 (7), p.e4695-n/a |
issn | 0952-3480 1099-1492 |
language | eng |
recordid | cdi_proquest_miscellaneous_2620087496 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Algorithms Biological products Brain - diagnostic imaging Calibration calibrationless parallel imaging Cartesian coordinates Data acquisition High acceleration Humans Image processing Image Processing, Computer-Assisted - methods Image quality Image reconstruction low‐rank tensor completion Magnetic resonance imaging Magnetic Resonance Imaging - methods Mathematical analysis Medical imaging multi‐slice phase encoding direction alternation Neuroimaging random undersampling Sensitivity Tensors uniform undersampling |
title | Calibrationless multi‐slice Cartesian MRI via orthogonally alternating phase encoding direction and joint low‐rank tensor completion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibrationless%20multi%E2%80%90slice%20Cartesian%20MRI%20via%20orthogonally%20alternating%20phase%20encoding%20direction%20and%20joint%20low%E2%80%90rank%20tensor%20completion&rft.jtitle=NMR%20in%20biomedicine&rft.au=Zhao,%20Yujiao&rft.date=2022-07&rft.volume=35&rft.issue=7&rft.spage=e4695&rft.epage=n/a&rft.pages=e4695-n/a&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.4695&rft_dat=%3Cproquest_cross%3E2676384846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676384846&rft_id=info:pmid/35032072&rfr_iscdi=true |