A review on AI in PET imaging

Artificial intelligence (AI) has been applied to various medical imaging tasks, such as computer-aided diagnosis. Specifically, deep learning techniques such as convolutional neural network (CNN) and generative adversarial network (GAN) have been extensively used for medical image generation. Image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of nuclear medicine 2022-02, Vol.36 (2), p.133-143
Hauptverfasser: Matsubara, Keisuke, Ibaraki, Masanobu, Nemoto, Mitsutaka, Watabe, Hiroshi, Kimura, Yuichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 2
container_start_page 133
container_title Annals of nuclear medicine
container_volume 36
creator Matsubara, Keisuke
Ibaraki, Masanobu
Nemoto, Mitsutaka
Watabe, Hiroshi
Kimura, Yuichi
description Artificial intelligence (AI) has been applied to various medical imaging tasks, such as computer-aided diagnosis. Specifically, deep learning techniques such as convolutional neural network (CNN) and generative adversarial network (GAN) have been extensively used for medical image generation. Image generation with deep learning has been investigated in studies using positron emission tomography (PET). This article reviews studies that applied deep learning techniques for image generation on PET. We categorized the studies for PET image generation with deep learning into three themes as follows: (1) recovering full PET data from noisy data by denoising with deep learning, (2) PET image reconstruction and attenuation correction with deep learning and (3) PET image translation and synthesis with deep learning. We introduce recent studies based on these three categories. Finally, we mention the limitations of applying deep learning techniques to PET image generation and future prospects for PET image generation.
doi_str_mv 10.1007/s12149-021-01710-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2620083707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620083707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-9f026ae8a581bbdf359856448fe8edc51a79272bd6b42da66928739d2badd6013</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gKAsePESnSSbr2MpVQsFPdRzyG6yZUu7WxNX8d-bulXBg6c5zDPvzDwInRO4IQDyNhJKco2BEgxEEsDqAA2JEjkWOWOHaAia5FgSJQfoJMYVAFVc0WM0YByoVkQN0cU4C_6t9u9Z22TjWVY32dN0kdUbu6yb5Sk6quw6-rN9HaHnu-li8oDnj_ezyXiOS6b1K9YVUGG9slyRonAV41pxkeeq8sq7khMrNZW0cKLIqbNCaKok044W1jkBhI3QdZ-7De1L5-Or2dSx9Ou1bXzbRUMFBVBMgkzo1R901XahSdftKA2KcskTRXuqDG2MwVdmG9JP4cMQMDt5ppdnkjzzJc-oNHS5j-6KjXc_I9-2EsB6IKZWs_Thd_c_sZ8Hs3Wo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629082575</pqid></control><display><type>article</type><title>A review on AI in PET imaging</title><source>SpringerLink Journals - AutoHoldings</source><creator>Matsubara, Keisuke ; Ibaraki, Masanobu ; Nemoto, Mitsutaka ; Watabe, Hiroshi ; Kimura, Yuichi</creator><creatorcontrib>Matsubara, Keisuke ; Ibaraki, Masanobu ; Nemoto, Mitsutaka ; Watabe, Hiroshi ; Kimura, Yuichi</creatorcontrib><description>Artificial intelligence (AI) has been applied to various medical imaging tasks, such as computer-aided diagnosis. Specifically, deep learning techniques such as convolutional neural network (CNN) and generative adversarial network (GAN) have been extensively used for medical image generation. Image generation with deep learning has been investigated in studies using positron emission tomography (PET). This article reviews studies that applied deep learning techniques for image generation on PET. We categorized the studies for PET image generation with deep learning into three themes as follows: (1) recovering full PET data from noisy data by denoising with deep learning, (2) PET image reconstruction and attenuation correction with deep learning and (3) PET image translation and synthesis with deep learning. We introduce recent studies based on these three categories. Finally, we mention the limitations of applying deep learning techniques to PET image generation and future prospects for PET image generation.</description><identifier>ISSN: 0914-7187</identifier><identifier>EISSN: 1864-6433</identifier><identifier>DOI: 10.1007/s12149-021-01710-8</identifier><identifier>PMID: 35029818</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Artificial intelligence ; Artificial neural networks ; Attenuation ; CAI ; Computer assisted instruction ; Deep learning ; Emission analysis ; Generative adversarial networks ; Image processing ; Image reconstruction ; Imaging ; Invited Review Article ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Neural networks ; Nuclear Medicine ; Positron emission ; Positron emission tomography ; Radiology ; Tomography</subject><ispartof>Annals of nuclear medicine, 2022-02, Vol.36 (2), p.133-143</ispartof><rights>The Author(s) under exclusive licence to The Japanese Society of Nuclear Medicine 2021</rights><rights>2021. The Author(s) under exclusive licence to The Japanese Society of Nuclear Medicine.</rights><rights>The Author(s) under exclusive licence to The Japanese Society of Nuclear Medicine 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-9f026ae8a581bbdf359856448fe8edc51a79272bd6b42da66928739d2badd6013</citedby><cites>FETCH-LOGICAL-c399t-9f026ae8a581bbdf359856448fe8edc51a79272bd6b42da66928739d2badd6013</cites><orcidid>0000-0003-4865-6474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12149-021-01710-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12149-021-01710-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35029818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsubara, Keisuke</creatorcontrib><creatorcontrib>Ibaraki, Masanobu</creatorcontrib><creatorcontrib>Nemoto, Mitsutaka</creatorcontrib><creatorcontrib>Watabe, Hiroshi</creatorcontrib><creatorcontrib>Kimura, Yuichi</creatorcontrib><title>A review on AI in PET imaging</title><title>Annals of nuclear medicine</title><addtitle>Ann Nucl Med</addtitle><addtitle>Ann Nucl Med</addtitle><description>Artificial intelligence (AI) has been applied to various medical imaging tasks, such as computer-aided diagnosis. Specifically, deep learning techniques such as convolutional neural network (CNN) and generative adversarial network (GAN) have been extensively used for medical image generation. Image generation with deep learning has been investigated in studies using positron emission tomography (PET). This article reviews studies that applied deep learning techniques for image generation on PET. We categorized the studies for PET image generation with deep learning into three themes as follows: (1) recovering full PET data from noisy data by denoising with deep learning, (2) PET image reconstruction and attenuation correction with deep learning and (3) PET image translation and synthesis with deep learning. We introduce recent studies based on these three categories. Finally, we mention the limitations of applying deep learning techniques to PET image generation and future prospects for PET image generation.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Attenuation</subject><subject>CAI</subject><subject>Computer assisted instruction</subject><subject>Deep learning</subject><subject>Emission analysis</subject><subject>Generative adversarial networks</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Invited Review Article</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neural networks</subject><subject>Nuclear Medicine</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Radiology</subject><subject>Tomography</subject><issn>0914-7187</issn><issn>1864-6433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMotlb_gKAsePESnSSbr2MpVQsFPdRzyG6yZUu7WxNX8d-bulXBg6c5zDPvzDwInRO4IQDyNhJKco2BEgxEEsDqAA2JEjkWOWOHaAia5FgSJQfoJMYVAFVc0WM0YByoVkQN0cU4C_6t9u9Z22TjWVY32dN0kdUbu6yb5Sk6quw6-rN9HaHnu-li8oDnj_ezyXiOS6b1K9YVUGG9slyRonAV41pxkeeq8sq7khMrNZW0cKLIqbNCaKok044W1jkBhI3QdZ-7De1L5-Or2dSx9Ou1bXzbRUMFBVBMgkzo1R901XahSdftKA2KcskTRXuqDG2MwVdmG9JP4cMQMDt5ppdnkjzzJc-oNHS5j-6KjXc_I9-2EsB6IKZWs_Thd_c_sZ8Hs3Wo</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Matsubara, Keisuke</creator><creator>Ibaraki, Masanobu</creator><creator>Nemoto, Mitsutaka</creator><creator>Watabe, Hiroshi</creator><creator>Kimura, Yuichi</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4865-6474</orcidid></search><sort><creationdate>20220201</creationdate><title>A review on AI in PET imaging</title><author>Matsubara, Keisuke ; Ibaraki, Masanobu ; Nemoto, Mitsutaka ; Watabe, Hiroshi ; Kimura, Yuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-9f026ae8a581bbdf359856448fe8edc51a79272bd6b42da66928739d2badd6013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Attenuation</topic><topic>CAI</topic><topic>Computer assisted instruction</topic><topic>Deep learning</topic><topic>Emission analysis</topic><topic>Generative adversarial networks</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Invited Review Article</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neural networks</topic><topic>Nuclear Medicine</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Radiology</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsubara, Keisuke</creatorcontrib><creatorcontrib>Ibaraki, Masanobu</creatorcontrib><creatorcontrib>Nemoto, Mitsutaka</creatorcontrib><creatorcontrib>Watabe, Hiroshi</creatorcontrib><creatorcontrib>Kimura, Yuichi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of nuclear medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsubara, Keisuke</au><au>Ibaraki, Masanobu</au><au>Nemoto, Mitsutaka</au><au>Watabe, Hiroshi</au><au>Kimura, Yuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review on AI in PET imaging</atitle><jtitle>Annals of nuclear medicine</jtitle><stitle>Ann Nucl Med</stitle><addtitle>Ann Nucl Med</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>36</volume><issue>2</issue><spage>133</spage><epage>143</epage><pages>133-143</pages><issn>0914-7187</issn><eissn>1864-6433</eissn><abstract>Artificial intelligence (AI) has been applied to various medical imaging tasks, such as computer-aided diagnosis. Specifically, deep learning techniques such as convolutional neural network (CNN) and generative adversarial network (GAN) have been extensively used for medical image generation. Image generation with deep learning has been investigated in studies using positron emission tomography (PET). This article reviews studies that applied deep learning techniques for image generation on PET. We categorized the studies for PET image generation with deep learning into three themes as follows: (1) recovering full PET data from noisy data by denoising with deep learning, (2) PET image reconstruction and attenuation correction with deep learning and (3) PET image translation and synthesis with deep learning. We introduce recent studies based on these three categories. Finally, we mention the limitations of applying deep learning techniques to PET image generation and future prospects for PET image generation.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>35029818</pmid><doi>10.1007/s12149-021-01710-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4865-6474</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0914-7187
ispartof Annals of nuclear medicine, 2022-02, Vol.36 (2), p.133-143
issn 0914-7187
1864-6433
language eng
recordid cdi_proquest_miscellaneous_2620083707
source SpringerLink Journals - AutoHoldings
subjects Artificial intelligence
Artificial neural networks
Attenuation
CAI
Computer assisted instruction
Deep learning
Emission analysis
Generative adversarial networks
Image processing
Image reconstruction
Imaging
Invited Review Article
Medical imaging
Medicine
Medicine & Public Health
Neural networks
Nuclear Medicine
Positron emission
Positron emission tomography
Radiology
Tomography
title A review on AI in PET imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20on%20AI%20in%20PET%20imaging&rft.jtitle=Annals%20of%20nuclear%20medicine&rft.au=Matsubara,%20Keisuke&rft.date=2022-02-01&rft.volume=36&rft.issue=2&rft.spage=133&rft.epage=143&rft.pages=133-143&rft.issn=0914-7187&rft.eissn=1864-6433&rft_id=info:doi/10.1007/s12149-021-01710-8&rft_dat=%3Cproquest_cross%3E2620083707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629082575&rft_id=info:pmid/35029818&rfr_iscdi=true