Magnetic nanoparticles covalently immobilizing epidermal growth factor receptor by SNAP-Tag protein as a platform for drug discovery
Magnetic nanoparticles (NPs) cloaked with cell membranes expressing high levels of the epidermal growth factor receptor (EGFR) have been used to screen for EGFR-targeting active compounds in traditional Chinese medicine (TCM) formulations. However, previous strategies involved physical immobilizatio...
Gespeichert in:
Veröffentlicht in: | Talanta (Oxford) 2022-04, Vol.240, p.123204-123204, Article 123204 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetic nanoparticles (NPs) cloaked with cell membranes expressing high levels of the epidermal growth factor receptor (EGFR) have been used to screen for EGFR-targeting active compounds in traditional Chinese medicine (TCM) formulations. However, previous strategies involved physical immobilization of the biomaterials on the surface of the nanocarrier, resulting in highly unstable platforms since the biological materials could dislodge easily. Chemical bonding of biomaterials to the nanoparticles surface can improve the stability of the biomimetic platforms. In this study, membrane fragments from cells expressing SNAP-Tag-EGFR (ST-EGFR) were immobilized on the surface of magnetic NPs. The ST-EGFR magnetic cell membrane nanoparticles (ST-EGFR/MCMNs) showed greater stability, and higher binding capacity, selectivity adsorption of gefitinib after 7 days compared to the un-immobilized magnetic cell membrane nanoparticles (EGFR/MCMNs). The ST-EGFR/MCMNs were used to screen for the EGFR-targeting active compounds of Zanthoxyli Radix (ZR), and identified toddalolactone and nitidine chloride. The latter significantly inhibited the proliferation of EGFR-overexpressing cancer cells, and was more effective compared to gefitinib. This innovative technology can be used to rapidly screen for active compounds from complex extracts, and aid in drug discovery.
[Display omitted]
•A method for direct and specific immobilize membrane proteins was established through SNAP-tag technology.•Cell membrane fragments of SNAP-Tag-EGFR were immobilized on the surface of magnetic nanoparticles.•The ST-EGFR/MCMNs showed greater stability, and higher binding capacity, selectivity adsorption of gefitinib. |
---|---|
ISSN: | 0039-9140 1873-3573 |
DOI: | 10.1016/j.talanta.2021.123204 |