Assessing model adequacy leads to more robust phylogeographic inference

Phylogeographic studies base inferences on large data sets and complex demographic models, but these models are applied in ways that could mislead researchers and compromise their inference. Researchers face three challenges associated with the use of models: (i) ‘model selection’, or the identifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in ecology & evolution (Amsterdam) 2022-05, Vol.37 (5), p.402-410
Hauptverfasser: Carstens, Bryan C., Smith, Megan L., Duckett, Drew J., Fonseca, Emanuel M., Thomé, M. Tereza C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue 5
container_start_page 402
container_title Trends in ecology & evolution (Amsterdam)
container_volume 37
creator Carstens, Bryan C.
Smith, Megan L.
Duckett, Drew J.
Fonseca, Emanuel M.
Thomé, M. Tereza C.
description Phylogeographic studies base inferences on large data sets and complex demographic models, but these models are applied in ways that could mislead researchers and compromise their inference. Researchers face three challenges associated with the use of models: (i) ‘model selection’, or the identification of an appropriate model for analysis; (ii) ‘evaluation of analytical results’, or the interpretation of the biological significance of the resulting parameter estimates, delimitations, and topologies; and (iii) ‘model evaluation’, or the use of statistical approaches to assess the fit of the model to the data. The field collectively invests most of its energy in point (ii) without considering the other points; we argue that attention to points (i) and (iii) is essential to phylogeographic inference. Phylogeography makes inferences about the evolutionary history of species by using statistical models of historical demography to analyze genetic data. These models are increasingly complex and sometimes applied in ways that can compromise the quality of phylogeographic inference.Inferences are most often derived from estimates of evolutionary parameters made using these models. Parameter estimates are contextually dependent on the model used to estimate the parameters and are informative only if the model is a reasonable fit to the data.A variety of approaches can be used to assess model adequacy, from simple visual examinations to statistical goodness of fit tests. The increased power and interpretability of statistical approaches justify their increased complexity.A review of existing software packages demonstrates that, when tests for model adequacy are built into software packages by developers, users are more likely to conduct these analyses.
doi_str_mv 10.1016/j.tree.2021.12.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2620077955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169534721003426</els_id><sourcerecordid>2620077955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-e1bc6c0015f907c287e293541f034ae578593235b1f2814bbc857a2aa88027733</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4Mobk6_gAfp0Utr_jRLCl7G0CkMvOg5pOnbLaNttqQV9u1N2fRoLi-E5_fjfR-E7gnOCCbzp13We4CMYkoyQjOMxQWaEiloKplkl2gaoSLlLBcTdBPCDsdX5MU1mjCOqaA0n6LVIgQIwXabpHUVNImu4DBoc0wa0FVIehf_PSTelUPok_322LgNuI3X-601ie1q8NAZuEVXtW4C3J3nDH29vnwu39L1x-p9uVinJse4T4GUZm4wJrwusDBUCqAF4zmpMcs1cCF5wSjjJampJHlZGsmFplpLGTcWjM3Q46l3791hgNCr1gYDTaM7cENQdE6jB1FwHlF6Qo13IXio1d7bVvujIliNAtVOjQLVKFARqmIwhh7O_UPZQvUX-TUWgecTAPHKbwteBWNHA5X1YHpVOftf_w_ks4C-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620077955</pqid></control><display><type>article</type><title>Assessing model adequacy leads to more robust phylogeographic inference</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Carstens, Bryan C. ; Smith, Megan L. ; Duckett, Drew J. ; Fonseca, Emanuel M. ; Thomé, M. Tereza C.</creator><creatorcontrib>Carstens, Bryan C. ; Smith, Megan L. ; Duckett, Drew J. ; Fonseca, Emanuel M. ; Thomé, M. Tereza C.</creatorcontrib><description>Phylogeographic studies base inferences on large data sets and complex demographic models, but these models are applied in ways that could mislead researchers and compromise their inference. Researchers face three challenges associated with the use of models: (i) ‘model selection’, or the identification of an appropriate model for analysis; (ii) ‘evaluation of analytical results’, or the interpretation of the biological significance of the resulting parameter estimates, delimitations, and topologies; and (iii) ‘model evaluation’, or the use of statistical approaches to assess the fit of the model to the data. The field collectively invests most of its energy in point (ii) without considering the other points; we argue that attention to points (i) and (iii) is essential to phylogeographic inference. Phylogeography makes inferences about the evolutionary history of species by using statistical models of historical demography to analyze genetic data. These models are increasingly complex and sometimes applied in ways that can compromise the quality of phylogeographic inference.Inferences are most often derived from estimates of evolutionary parameters made using these models. Parameter estimates are contextually dependent on the model used to estimate the parameters and are informative only if the model is a reasonable fit to the data.A variety of approaches can be used to assess model adequacy, from simple visual examinations to statistical goodness of fit tests. The increased power and interpretability of statistical approaches justify their increased complexity.A review of existing software packages demonstrates that, when tests for model adequacy are built into software packages by developers, users are more likely to conduct these analyses.</description><identifier>ISSN: 0169-5347</identifier><identifier>EISSN: 1872-8383</identifier><identifier>DOI: 10.1016/j.tree.2021.12.007</identifier><identifier>PMID: 35027224</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>demographic model ; model adequacy ; model fit ; model selection ; Models, Genetic ; Phylogeography</subject><ispartof>Trends in ecology &amp; evolution (Amsterdam), 2022-05, Vol.37 (5), p.402-410</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-e1bc6c0015f907c287e293541f034ae578593235b1f2814bbc857a2aa88027733</citedby><cites>FETCH-LOGICAL-c400t-e1bc6c0015f907c287e293541f034ae578593235b1f2814bbc857a2aa88027733</cites><orcidid>0000-0002-1552-227X ; 0000-0002-2952-8816 ; 0000-0002-2410-3069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169534721003426$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35027224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carstens, Bryan C.</creatorcontrib><creatorcontrib>Smith, Megan L.</creatorcontrib><creatorcontrib>Duckett, Drew J.</creatorcontrib><creatorcontrib>Fonseca, Emanuel M.</creatorcontrib><creatorcontrib>Thomé, M. Tereza C.</creatorcontrib><title>Assessing model adequacy leads to more robust phylogeographic inference</title><title>Trends in ecology &amp; evolution (Amsterdam)</title><addtitle>Trends Ecol Evol</addtitle><description>Phylogeographic studies base inferences on large data sets and complex demographic models, but these models are applied in ways that could mislead researchers and compromise their inference. Researchers face three challenges associated with the use of models: (i) ‘model selection’, or the identification of an appropriate model for analysis; (ii) ‘evaluation of analytical results’, or the interpretation of the biological significance of the resulting parameter estimates, delimitations, and topologies; and (iii) ‘model evaluation’, or the use of statistical approaches to assess the fit of the model to the data. The field collectively invests most of its energy in point (ii) without considering the other points; we argue that attention to points (i) and (iii) is essential to phylogeographic inference. Phylogeography makes inferences about the evolutionary history of species by using statistical models of historical demography to analyze genetic data. These models are increasingly complex and sometimes applied in ways that can compromise the quality of phylogeographic inference.Inferences are most often derived from estimates of evolutionary parameters made using these models. Parameter estimates are contextually dependent on the model used to estimate the parameters and are informative only if the model is a reasonable fit to the data.A variety of approaches can be used to assess model adequacy, from simple visual examinations to statistical goodness of fit tests. The increased power and interpretability of statistical approaches justify their increased complexity.A review of existing software packages demonstrates that, when tests for model adequacy are built into software packages by developers, users are more likely to conduct these analyses.</description><subject>demographic model</subject><subject>model adequacy</subject><subject>model fit</subject><subject>model selection</subject><subject>Models, Genetic</subject><subject>Phylogeography</subject><issn>0169-5347</issn><issn>1872-8383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9LwzAYh4Mobk6_gAfp0Utr_jRLCl7G0CkMvOg5pOnbLaNttqQV9u1N2fRoLi-E5_fjfR-E7gnOCCbzp13We4CMYkoyQjOMxQWaEiloKplkl2gaoSLlLBcTdBPCDsdX5MU1mjCOqaA0n6LVIgQIwXabpHUVNImu4DBoc0wa0FVIehf_PSTelUPok_322LgNuI3X-601ie1q8NAZuEVXtW4C3J3nDH29vnwu39L1x-p9uVinJse4T4GUZm4wJrwusDBUCqAF4zmpMcs1cCF5wSjjJampJHlZGsmFplpLGTcWjM3Q46l3791hgNCr1gYDTaM7cENQdE6jB1FwHlF6Qo13IXio1d7bVvujIliNAtVOjQLVKFARqmIwhh7O_UPZQvUX-TUWgecTAPHKbwteBWNHA5X1YHpVOftf_w_ks4C-</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Carstens, Bryan C.</creator><creator>Smith, Megan L.</creator><creator>Duckett, Drew J.</creator><creator>Fonseca, Emanuel M.</creator><creator>Thomé, M. Tereza C.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1552-227X</orcidid><orcidid>https://orcid.org/0000-0002-2952-8816</orcidid><orcidid>https://orcid.org/0000-0002-2410-3069</orcidid></search><sort><creationdate>202205</creationdate><title>Assessing model adequacy leads to more robust phylogeographic inference</title><author>Carstens, Bryan C. ; Smith, Megan L. ; Duckett, Drew J. ; Fonseca, Emanuel M. ; Thomé, M. Tereza C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-e1bc6c0015f907c287e293541f034ae578593235b1f2814bbc857a2aa88027733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>demographic model</topic><topic>model adequacy</topic><topic>model fit</topic><topic>model selection</topic><topic>Models, Genetic</topic><topic>Phylogeography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carstens, Bryan C.</creatorcontrib><creatorcontrib>Smith, Megan L.</creatorcontrib><creatorcontrib>Duckett, Drew J.</creatorcontrib><creatorcontrib>Fonseca, Emanuel M.</creatorcontrib><creatorcontrib>Thomé, M. Tereza C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in ecology &amp; evolution (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carstens, Bryan C.</au><au>Smith, Megan L.</au><au>Duckett, Drew J.</au><au>Fonseca, Emanuel M.</au><au>Thomé, M. Tereza C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing model adequacy leads to more robust phylogeographic inference</atitle><jtitle>Trends in ecology &amp; evolution (Amsterdam)</jtitle><addtitle>Trends Ecol Evol</addtitle><date>2022-05</date><risdate>2022</risdate><volume>37</volume><issue>5</issue><spage>402</spage><epage>410</epage><pages>402-410</pages><issn>0169-5347</issn><eissn>1872-8383</eissn><abstract>Phylogeographic studies base inferences on large data sets and complex demographic models, but these models are applied in ways that could mislead researchers and compromise their inference. Researchers face three challenges associated with the use of models: (i) ‘model selection’, or the identification of an appropriate model for analysis; (ii) ‘evaluation of analytical results’, or the interpretation of the biological significance of the resulting parameter estimates, delimitations, and topologies; and (iii) ‘model evaluation’, or the use of statistical approaches to assess the fit of the model to the data. The field collectively invests most of its energy in point (ii) without considering the other points; we argue that attention to points (i) and (iii) is essential to phylogeographic inference. Phylogeography makes inferences about the evolutionary history of species by using statistical models of historical demography to analyze genetic data. These models are increasingly complex and sometimes applied in ways that can compromise the quality of phylogeographic inference.Inferences are most often derived from estimates of evolutionary parameters made using these models. Parameter estimates are contextually dependent on the model used to estimate the parameters and are informative only if the model is a reasonable fit to the data.A variety of approaches can be used to assess model adequacy, from simple visual examinations to statistical goodness of fit tests. The increased power and interpretability of statistical approaches justify their increased complexity.A review of existing software packages demonstrates that, when tests for model adequacy are built into software packages by developers, users are more likely to conduct these analyses.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35027224</pmid><doi>10.1016/j.tree.2021.12.007</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1552-227X</orcidid><orcidid>https://orcid.org/0000-0002-2952-8816</orcidid><orcidid>https://orcid.org/0000-0002-2410-3069</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-5347
ispartof Trends in ecology & evolution (Amsterdam), 2022-05, Vol.37 (5), p.402-410
issn 0169-5347
1872-8383
language eng
recordid cdi_proquest_miscellaneous_2620077955
source MEDLINE; Elsevier ScienceDirect Journals
subjects demographic model
model adequacy
model fit
model selection
Models, Genetic
Phylogeography
title Assessing model adequacy leads to more robust phylogeographic inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20model%20adequacy%20leads%20to%20more%20robust%20phylogeographic%20inference&rft.jtitle=Trends%20in%20ecology%20&%20evolution%20(Amsterdam)&rft.au=Carstens,%20Bryan%20C.&rft.date=2022-05&rft.volume=37&rft.issue=5&rft.spage=402&rft.epage=410&rft.pages=402-410&rft.issn=0169-5347&rft.eissn=1872-8383&rft_id=info:doi/10.1016/j.tree.2021.12.007&rft_dat=%3Cproquest_cross%3E2620077955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620077955&rft_id=info:pmid/35027224&rft_els_id=S0169534721003426&rfr_iscdi=true