In Situ Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries

Reconstructive surgery remains inadequate for the treatment of volumetric muscle loss (VML). The geometry of skeletal muscle defects in VML injuries varies on a case-by-case basis. Three-dimensional (3D) printing has emerged as one strategy that enables the fabrication of scaffolds that match the ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied bio materials 2020-03, Vol.3 (3), p.1568-1579
Hauptverfasser: Russell, Carina S, Mostafavi, Azadeh, Quint, Jacob P, Panayi, Adriana C, Baldino, Kodi, Williams, Tyrell J, Daubendiek, Jocelyn G, Hugo Sánchez, Victor, Bonick, Zack, Trujillo-Miranda, Mairon, Shin, Su Ryon, Pourquie, Olivier, Salehi, Sahar, Sinha, Indranil, Tamayol, Ali
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1579
container_issue 3
container_start_page 1568
container_title ACS applied bio materials
container_volume 3
creator Russell, Carina S
Mostafavi, Azadeh
Quint, Jacob P
Panayi, Adriana C
Baldino, Kodi
Williams, Tyrell J
Daubendiek, Jocelyn G
Hugo Sánchez, Victor
Bonick, Zack
Trujillo-Miranda, Mairon
Shin, Su Ryon
Pourquie, Olivier
Salehi, Sahar
Sinha, Indranil
Tamayol, Ali
description Reconstructive surgery remains inadequate for the treatment of volumetric muscle loss (VML). The geometry of skeletal muscle defects in VML injuries varies on a case-by-case basis. Three-dimensional (3D) printing has emerged as one strategy that enables the fabrication of scaffolds that match the geometry of the defect site. However, the time and facilities needed for imaging the defect site, processing to render computer models, and printing a suitable scaffold prevent immediate reconstructive interventions post-traumatic injuries. In addition, the proper implantation of hydrogel-based scaffolds, which have generated promising results in vitro, is a major challenge. To overcome these challenges, a paradigm is proposed in which gelatin-based hydrogels are printed directly into the defect area and cross-linked in situ. The adhesiveness of the bioink hydrogel to the skeletal muscles was assessed ex vivo. The suitability of the in situ printed bioink for the delivery of cells is successfully assessed in vitro. Acellular scaffolds are directly printed into the defect site of mice with VML injury, exhibiting proper adhesion to the surrounding tissue and promoting remnant skeletal muscle hypertrophy. The developed handheld printer capable of 3D in situ printing of adhesive scaffolds is a paradigm shift in the rapid yet precise filling of complex skeletal muscle tissue defects.
doi_str_mv 10.1021/acsabm.9b01176
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2619544366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619544366</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-804aaf385d1d6f14af49f698ff069fccb3c5c92aaee59a644331eef2a6de331a3</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbKndupRZipA6j2TaWZaitlBRaF1KuJncaVPzqDOJ0H9vSqq4cXXP4vsO3EPINWcjzgS_B-MhKUY6YZyP1Rnpi2isAhUKcf4n98jQ-x1jTDAm-URfkp6MWl2F4z55X5R0ldUNfXVZWWflhlaWTtMt-uwL6fyQumqDOV0ZsLbKU09t5Wi9Rbp2CHWBZX0UVh-YYw05fW68yZEuyl3jMvRX5MJC7nF4ugPy9viwns2D5cvTYjZdBiAlq4MJCwGsnEQpT5XlIdhQW6Un1jKlrTGJNJHRAgAx0qDCUEqOaAWoFNsIckBuu969qz4b9HVcZN5gnkOJVeNjobiOWk2pFh11qHGV9w5tvHdZAe4QcxYfV427VePTqq1wc-pukgLTX_xnwxa464BWjHdV48r21f_avgH06II7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619544366</pqid></control><display><type>article</type><title>In Situ Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries</title><source>ACS Publications</source><creator>Russell, Carina S ; Mostafavi, Azadeh ; Quint, Jacob P ; Panayi, Adriana C ; Baldino, Kodi ; Williams, Tyrell J ; Daubendiek, Jocelyn G ; Hugo Sánchez, Victor ; Bonick, Zack ; Trujillo-Miranda, Mairon ; Shin, Su Ryon ; Pourquie, Olivier ; Salehi, Sahar ; Sinha, Indranil ; Tamayol, Ali</creator><creatorcontrib>Russell, Carina S ; Mostafavi, Azadeh ; Quint, Jacob P ; Panayi, Adriana C ; Baldino, Kodi ; Williams, Tyrell J ; Daubendiek, Jocelyn G ; Hugo Sánchez, Victor ; Bonick, Zack ; Trujillo-Miranda, Mairon ; Shin, Su Ryon ; Pourquie, Olivier ; Salehi, Sahar ; Sinha, Indranil ; Tamayol, Ali</creatorcontrib><description>Reconstructive surgery remains inadequate for the treatment of volumetric muscle loss (VML). The geometry of skeletal muscle defects in VML injuries varies on a case-by-case basis. Three-dimensional (3D) printing has emerged as one strategy that enables the fabrication of scaffolds that match the geometry of the defect site. However, the time and facilities needed for imaging the defect site, processing to render computer models, and printing a suitable scaffold prevent immediate reconstructive interventions post-traumatic injuries. In addition, the proper implantation of hydrogel-based scaffolds, which have generated promising results in vitro, is a major challenge. To overcome these challenges, a paradigm is proposed in which gelatin-based hydrogels are printed directly into the defect area and cross-linked in situ. The adhesiveness of the bioink hydrogel to the skeletal muscles was assessed ex vivo. The suitability of the in situ printed bioink for the delivery of cells is successfully assessed in vitro. Acellular scaffolds are directly printed into the defect site of mice with VML injury, exhibiting proper adhesion to the surrounding tissue and promoting remnant skeletal muscle hypertrophy. The developed handheld printer capable of 3D in situ printing of adhesive scaffolds is a paradigm shift in the rapid yet precise filling of complex skeletal muscle tissue defects.</description><identifier>ISSN: 2576-6422</identifier><identifier>EISSN: 2576-6422</identifier><identifier>DOI: 10.1021/acsabm.9b01176</identifier><identifier>PMID: 35021647</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied bio materials, 2020-03, Vol.3 (3), p.1568-1579</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-804aaf385d1d6f14af49f698ff069fccb3c5c92aaee59a644331eef2a6de331a3</citedby><cites>FETCH-LOGICAL-a330t-804aaf385d1d6f14af49f698ff069fccb3c5c92aaee59a644331eef2a6de331a3</cites><orcidid>0000-0003-1801-2889 ; 0000-0003-0864-6482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsabm.9b01176$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsabm.9b01176$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35021647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Russell, Carina S</creatorcontrib><creatorcontrib>Mostafavi, Azadeh</creatorcontrib><creatorcontrib>Quint, Jacob P</creatorcontrib><creatorcontrib>Panayi, Adriana C</creatorcontrib><creatorcontrib>Baldino, Kodi</creatorcontrib><creatorcontrib>Williams, Tyrell J</creatorcontrib><creatorcontrib>Daubendiek, Jocelyn G</creatorcontrib><creatorcontrib>Hugo Sánchez, Victor</creatorcontrib><creatorcontrib>Bonick, Zack</creatorcontrib><creatorcontrib>Trujillo-Miranda, Mairon</creatorcontrib><creatorcontrib>Shin, Su Ryon</creatorcontrib><creatorcontrib>Pourquie, Olivier</creatorcontrib><creatorcontrib>Salehi, Sahar</creatorcontrib><creatorcontrib>Sinha, Indranil</creatorcontrib><creatorcontrib>Tamayol, Ali</creatorcontrib><title>In Situ Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries</title><title>ACS applied bio materials</title><addtitle>ACS Appl. Bio Mater</addtitle><description>Reconstructive surgery remains inadequate for the treatment of volumetric muscle loss (VML). The geometry of skeletal muscle defects in VML injuries varies on a case-by-case basis. Three-dimensional (3D) printing has emerged as one strategy that enables the fabrication of scaffolds that match the geometry of the defect site. However, the time and facilities needed for imaging the defect site, processing to render computer models, and printing a suitable scaffold prevent immediate reconstructive interventions post-traumatic injuries. In addition, the proper implantation of hydrogel-based scaffolds, which have generated promising results in vitro, is a major challenge. To overcome these challenges, a paradigm is proposed in which gelatin-based hydrogels are printed directly into the defect area and cross-linked in situ. The adhesiveness of the bioink hydrogel to the skeletal muscles was assessed ex vivo. The suitability of the in situ printed bioink for the delivery of cells is successfully assessed in vitro. Acellular scaffolds are directly printed into the defect site of mice with VML injury, exhibiting proper adhesion to the surrounding tissue and promoting remnant skeletal muscle hypertrophy. The developed handheld printer capable of 3D in situ printing of adhesive scaffolds is a paradigm shift in the rapid yet precise filling of complex skeletal muscle tissue defects.</description><issn>2576-6422</issn><issn>2576-6422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRbKndupRZipA6j2TaWZaitlBRaF1KuJncaVPzqDOJ0H9vSqq4cXXP4vsO3EPINWcjzgS_B-MhKUY6YZyP1Rnpi2isAhUKcf4n98jQ-x1jTDAm-URfkp6MWl2F4z55X5R0ldUNfXVZWWflhlaWTtMt-uwL6fyQumqDOV0ZsLbKU09t5Wi9Rbp2CHWBZX0UVh-YYw05fW68yZEuyl3jMvRX5MJC7nF4ugPy9viwns2D5cvTYjZdBiAlq4MJCwGsnEQpT5XlIdhQW6Un1jKlrTGJNJHRAgAx0qDCUEqOaAWoFNsIckBuu969qz4b9HVcZN5gnkOJVeNjobiOWk2pFh11qHGV9w5tvHdZAe4QcxYfV427VePTqq1wc-pukgLTX_xnwxa464BWjHdV48r21f_avgH06II7</recordid><startdate>20200316</startdate><enddate>20200316</enddate><creator>Russell, Carina S</creator><creator>Mostafavi, Azadeh</creator><creator>Quint, Jacob P</creator><creator>Panayi, Adriana C</creator><creator>Baldino, Kodi</creator><creator>Williams, Tyrell J</creator><creator>Daubendiek, Jocelyn G</creator><creator>Hugo Sánchez, Victor</creator><creator>Bonick, Zack</creator><creator>Trujillo-Miranda, Mairon</creator><creator>Shin, Su Ryon</creator><creator>Pourquie, Olivier</creator><creator>Salehi, Sahar</creator><creator>Sinha, Indranil</creator><creator>Tamayol, Ali</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1801-2889</orcidid><orcidid>https://orcid.org/0000-0003-0864-6482</orcidid></search><sort><creationdate>20200316</creationdate><title>In Situ Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries</title><author>Russell, Carina S ; Mostafavi, Azadeh ; Quint, Jacob P ; Panayi, Adriana C ; Baldino, Kodi ; Williams, Tyrell J ; Daubendiek, Jocelyn G ; Hugo Sánchez, Victor ; Bonick, Zack ; Trujillo-Miranda, Mairon ; Shin, Su Ryon ; Pourquie, Olivier ; Salehi, Sahar ; Sinha, Indranil ; Tamayol, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-804aaf385d1d6f14af49f698ff069fccb3c5c92aaee59a644331eef2a6de331a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russell, Carina S</creatorcontrib><creatorcontrib>Mostafavi, Azadeh</creatorcontrib><creatorcontrib>Quint, Jacob P</creatorcontrib><creatorcontrib>Panayi, Adriana C</creatorcontrib><creatorcontrib>Baldino, Kodi</creatorcontrib><creatorcontrib>Williams, Tyrell J</creatorcontrib><creatorcontrib>Daubendiek, Jocelyn G</creatorcontrib><creatorcontrib>Hugo Sánchez, Victor</creatorcontrib><creatorcontrib>Bonick, Zack</creatorcontrib><creatorcontrib>Trujillo-Miranda, Mairon</creatorcontrib><creatorcontrib>Shin, Su Ryon</creatorcontrib><creatorcontrib>Pourquie, Olivier</creatorcontrib><creatorcontrib>Salehi, Sahar</creatorcontrib><creatorcontrib>Sinha, Indranil</creatorcontrib><creatorcontrib>Tamayol, Ali</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied bio materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russell, Carina S</au><au>Mostafavi, Azadeh</au><au>Quint, Jacob P</au><au>Panayi, Adriana C</au><au>Baldino, Kodi</au><au>Williams, Tyrell J</au><au>Daubendiek, Jocelyn G</au><au>Hugo Sánchez, Victor</au><au>Bonick, Zack</au><au>Trujillo-Miranda, Mairon</au><au>Shin, Su Ryon</au><au>Pourquie, Olivier</au><au>Salehi, Sahar</au><au>Sinha, Indranil</au><au>Tamayol, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries</atitle><jtitle>ACS applied bio materials</jtitle><addtitle>ACS Appl. Bio Mater</addtitle><date>2020-03-16</date><risdate>2020</risdate><volume>3</volume><issue>3</issue><spage>1568</spage><epage>1579</epage><pages>1568-1579</pages><issn>2576-6422</issn><eissn>2576-6422</eissn><abstract>Reconstructive surgery remains inadequate for the treatment of volumetric muscle loss (VML). The geometry of skeletal muscle defects in VML injuries varies on a case-by-case basis. Three-dimensional (3D) printing has emerged as one strategy that enables the fabrication of scaffolds that match the geometry of the defect site. However, the time and facilities needed for imaging the defect site, processing to render computer models, and printing a suitable scaffold prevent immediate reconstructive interventions post-traumatic injuries. In addition, the proper implantation of hydrogel-based scaffolds, which have generated promising results in vitro, is a major challenge. To overcome these challenges, a paradigm is proposed in which gelatin-based hydrogels are printed directly into the defect area and cross-linked in situ. The adhesiveness of the bioink hydrogel to the skeletal muscles was assessed ex vivo. The suitability of the in situ printed bioink for the delivery of cells is successfully assessed in vitro. Acellular scaffolds are directly printed into the defect site of mice with VML injury, exhibiting proper adhesion to the surrounding tissue and promoting remnant skeletal muscle hypertrophy. The developed handheld printer capable of 3D in situ printing of adhesive scaffolds is a paradigm shift in the rapid yet precise filling of complex skeletal muscle tissue defects.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35021647</pmid><doi>10.1021/acsabm.9b01176</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1801-2889</orcidid><orcidid>https://orcid.org/0000-0003-0864-6482</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2576-6422
ispartof ACS applied bio materials, 2020-03, Vol.3 (3), p.1568-1579
issn 2576-6422
2576-6422
language eng
recordid cdi_proquest_miscellaneous_2619544366
source ACS Publications
title In Situ Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Printing%20of%20Adhesive%20Hydrogel%20Scaffolds%20for%20the%20Treatment%20of%20Skeletal%20Muscle%20Injuries&rft.jtitle=ACS%20applied%20bio%20materials&rft.au=Russell,%20Carina%20S&rft.date=2020-03-16&rft.volume=3&rft.issue=3&rft.spage=1568&rft.epage=1579&rft.pages=1568-1579&rft.issn=2576-6422&rft.eissn=2576-6422&rft_id=info:doi/10.1021/acsabm.9b01176&rft_dat=%3Cproquest_cross%3E2619544366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619544366&rft_id=info:pmid/35021647&rfr_iscdi=true