Emergence of stochastic resonance in a two-compartment hippocampal pyramidal neuron model

In vitro studies have shown that hippocampal pyramidal neurons employ a mechanism similar to stochastic resonance (SR) to enhance the detection and transmission of weak stimuli generated at distal synapses. To support the experimental findings from the perspective of multicompartment model analysis,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational neuroscience 2022-05, Vol.50 (2), p.217-240
Hauptverfasser: Ghori, Muhammad Bilal, Kang, Yanmei, Chen, Yaqian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In vitro studies have shown that hippocampal pyramidal neurons employ a mechanism similar to stochastic resonance (SR) to enhance the detection and transmission of weak stimuli generated at distal synapses. To support the experimental findings from the perspective of multicompartment model analysis, this paper aimed to elucidate the phenomenon of SR in a noisy two-compartment hippocampal pyramidal neuron model, which was a variant of the Pinsky-Rinzel neuron model with smooth activation functions and a hyperpolarization-activated cation current. With a bifurcation analysis of the model, we demonstrated the underlying dynamical structure responsible for the occurrence of SR. Furthermore, using a stochastically generated biphasic pulse train and broadband noise generated by the Orenstein-Uhlenbeck process as noise perturbation, both SR and suprathreshold SR were observed and quantified. Spectral analysis revealed that the distribution of spectral power under noise perturbations, in addition to inherent neurodynamics, is the main factor affecting SR behavior. The research results suggested that noise enhances the transmission of weak stimuli associated with elongated dendritic structures of hippocampal pyramidal neurons, thereby providing support for related laboratory findings.
ISSN:0929-5313
1573-6873
DOI:10.1007/s10827-021-00808-2