High-Strength and High-Toughness Silk Fibroin Hydrogels: A Strategy Using Dynamic Host-Guest Interactions

Natural polymer-based hydrogels attract great attention because of their inherent biocompatibility and controllable biodegradability. However, the broad applications of these hydrogels require a combination of high mechanical strength, high toughness, fatigue resistance, as well as self-healing. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied bio materials 2020-10, Vol.3 (10), p.7103-7112
Hauptverfasser: Huang, Xiaowei, Zhang, Mengya, Ming, Jinfa, Ning, Xin, Bai, Shumeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Natural polymer-based hydrogels attract great attention because of their inherent biocompatibility and controllable biodegradability. However, the broad applications of these hydrogels require a combination of high mechanical strength, high toughness, fatigue resistance, as well as self-healing. The integration of this combination into one natural polymer-based hydrogel remains challenging. Here, a molecular design strategy was proposed to fabricate mechanically robust silk fibroin-based hydrogels using host-guest interactions. Silk fibroin molecules was chemically modified with cholesterol (Chol, guest) or β-cyclodextrin (β-CD, host), and host-guest interaction between Chol and β-CD moieties drove the supramolecular assemblies of hydrogels. The dissociation/reassociation behavior of host-guest complexation, serving as sacrificial bonds, endowed hydrogels with effective energy dissipation and rapid self-healing ability. The prepared silk fibroin-based hydrogels exhibited high mechanical strength, high toughness, and remarkable fatigue resistance, superior to conventional silk fibroin hydrogels. Moreover, due to reversible host-guest interactions, hydrogels achieved facile functional recovery after damage without any external stimuli. This design strategy provides an avenue to develop natural polymer-based materials with robust mechanical properties, thus broadening current hydrogel applications.
ISSN:2576-6422
2576-6422
DOI:10.1021/acsabm.0c00933