Ultra-High Signal Detection of Human Embryonic Stem Cells Driven by Two-Dimensional Materials
We observed a unique bioelectric signal of human embryonic stem cells using direct current–voltage measurements facilitated by few-layered 2D-MoS2 sheets. A 1.828 mA cell signal was achieved (2 orders of magnitude higher than previous electrical-based detection methods) as well as multiple cell read...
Gespeichert in:
Veröffentlicht in: | ACS applied bio materials 2018-08, Vol.1 (2), p.210-215 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 215 |
---|---|
container_issue | 2 |
container_start_page | 210 |
container_title | ACS applied bio materials |
container_volume | 1 |
creator | Chan, Sophia S. Y Tan, Yaw Sing Wu, Kan-Xing Cheung, Christine Loke, Desmond K |
description | We observed a unique bioelectric signal of human embryonic stem cells using direct current–voltage measurements facilitated by few-layered 2D-MoS2 sheets. A 1.828 mA cell signal was achieved (2 orders of magnitude higher than previous electrical-based detection methods) as well as multiple cell reading cycles demonstrating I ∼ 1.9 mA. Native stem cell proliferation, viability, and pluripotency were preserved. Molecular dynamics simulations elucidated the origin of the 2D-MoS2 sheet-assisted increase in current flow. This paves the way for the development of a broadly applicable, fast, and damage-free stem cell detection method capable of identifying pluripotency with virtually any complementary-metal-oxide-semiconductor circuits. |
doi_str_mv | 10.1021/acsabm.8b00085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2619210389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619210389</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-a85ae72e9244a29502eeb3a57e61f9c3ef39d92ef17bc696ccf7c300c5fff9063</originalsourceid><addsrcrecordid>eNp1kEtPAjEUhRujEYNsXZoujclgH8yjSwMoJhgXwNI0nXKLJdMZbGc0_HtrQOPG1bmL75zcfAhdUTKkhNE7pYMq3bAoCSFFeoIuWJpnSTZi7PTP3UODELYRYYRwWohz1OMpoRkv0gv0uqpar5KZ3bzhhd3UqsITaEG3tqlxY_Csc6rGU1f6fVNbjRctODyGqgp44u0H1Ljc4-Vnk0ysgzrEVlx4Vi14q6pwic5MDBgcs49WD9PleJbMXx6fxvfzRHFO2kQVqYKcgWCjkWIiJQyg5CrNIaNGaA6Gi7VgYGhe6kxkWptcc0J0aowRJON9dHPY3fnmvYPQSmeDjl-qGpouSJZRwSjhhYjo8IBq34Tgwcidt075vaREfluVB6vyaDUWro_bXelg_Yv_OIzA7QGIRbltOh8VhP_WvgBg_oGl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619210389</pqid></control><display><type>article</type><title>Ultra-High Signal Detection of Human Embryonic Stem Cells Driven by Two-Dimensional Materials</title><source>ACS Publications</source><creator>Chan, Sophia S. Y ; Tan, Yaw Sing ; Wu, Kan-Xing ; Cheung, Christine ; Loke, Desmond K</creator><creatorcontrib>Chan, Sophia S. Y ; Tan, Yaw Sing ; Wu, Kan-Xing ; Cheung, Christine ; Loke, Desmond K</creatorcontrib><description>We observed a unique bioelectric signal of human embryonic stem cells using direct current–voltage measurements facilitated by few-layered 2D-MoS2 sheets. A 1.828 mA cell signal was achieved (2 orders of magnitude higher than previous electrical-based detection methods) as well as multiple cell reading cycles demonstrating I ∼ 1.9 mA. Native stem cell proliferation, viability, and pluripotency were preserved. Molecular dynamics simulations elucidated the origin of the 2D-MoS2 sheet-assisted increase in current flow. This paves the way for the development of a broadly applicable, fast, and damage-free stem cell detection method capable of identifying pluripotency with virtually any complementary-metal-oxide-semiconductor circuits.</description><identifier>ISSN: 2576-6422</identifier><identifier>EISSN: 2576-6422</identifier><identifier>DOI: 10.1021/acsabm.8b00085</identifier><identifier>PMID: 35016385</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied bio materials, 2018-08, Vol.1 (2), p.210-215</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-a85ae72e9244a29502eeb3a57e61f9c3ef39d92ef17bc696ccf7c300c5fff9063</citedby><cites>FETCH-LOGICAL-a330t-a85ae72e9244a29502eeb3a57e61f9c3ef39d92ef17bc696ccf7c300c5fff9063</cites><orcidid>0000-0001-6710-0469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsabm.8b00085$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsabm.8b00085$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35016385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, Sophia S. Y</creatorcontrib><creatorcontrib>Tan, Yaw Sing</creatorcontrib><creatorcontrib>Wu, Kan-Xing</creatorcontrib><creatorcontrib>Cheung, Christine</creatorcontrib><creatorcontrib>Loke, Desmond K</creatorcontrib><title>Ultra-High Signal Detection of Human Embryonic Stem Cells Driven by Two-Dimensional Materials</title><title>ACS applied bio materials</title><addtitle>ACS Appl. Bio Mater</addtitle><description>We observed a unique bioelectric signal of human embryonic stem cells using direct current–voltage measurements facilitated by few-layered 2D-MoS2 sheets. A 1.828 mA cell signal was achieved (2 orders of magnitude higher than previous electrical-based detection methods) as well as multiple cell reading cycles demonstrating I ∼ 1.9 mA. Native stem cell proliferation, viability, and pluripotency were preserved. Molecular dynamics simulations elucidated the origin of the 2D-MoS2 sheet-assisted increase in current flow. This paves the way for the development of a broadly applicable, fast, and damage-free stem cell detection method capable of identifying pluripotency with virtually any complementary-metal-oxide-semiconductor circuits.</description><issn>2576-6422</issn><issn>2576-6422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPAjEUhRujEYNsXZoujclgH8yjSwMoJhgXwNI0nXKLJdMZbGc0_HtrQOPG1bmL75zcfAhdUTKkhNE7pYMq3bAoCSFFeoIuWJpnSTZi7PTP3UODELYRYYRwWohz1OMpoRkv0gv0uqpar5KZ3bzhhd3UqsITaEG3tqlxY_Csc6rGU1f6fVNbjRctODyGqgp44u0H1Ljc4-Vnk0ysgzrEVlx4Vi14q6pwic5MDBgcs49WD9PleJbMXx6fxvfzRHFO2kQVqYKcgWCjkWIiJQyg5CrNIaNGaA6Gi7VgYGhe6kxkWptcc0J0aowRJON9dHPY3fnmvYPQSmeDjl-qGpouSJZRwSjhhYjo8IBq34Tgwcidt075vaREfluVB6vyaDUWro_bXelg_Yv_OIzA7QGIRbltOh8VhP_WvgBg_oGl</recordid><startdate>20180820</startdate><enddate>20180820</enddate><creator>Chan, Sophia S. Y</creator><creator>Tan, Yaw Sing</creator><creator>Wu, Kan-Xing</creator><creator>Cheung, Christine</creator><creator>Loke, Desmond K</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6710-0469</orcidid></search><sort><creationdate>20180820</creationdate><title>Ultra-High Signal Detection of Human Embryonic Stem Cells Driven by Two-Dimensional Materials</title><author>Chan, Sophia S. Y ; Tan, Yaw Sing ; Wu, Kan-Xing ; Cheung, Christine ; Loke, Desmond K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-a85ae72e9244a29502eeb3a57e61f9c3ef39d92ef17bc696ccf7c300c5fff9063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Sophia S. Y</creatorcontrib><creatorcontrib>Tan, Yaw Sing</creatorcontrib><creatorcontrib>Wu, Kan-Xing</creatorcontrib><creatorcontrib>Cheung, Christine</creatorcontrib><creatorcontrib>Loke, Desmond K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied bio materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Sophia S. Y</au><au>Tan, Yaw Sing</au><au>Wu, Kan-Xing</au><au>Cheung, Christine</au><au>Loke, Desmond K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-High Signal Detection of Human Embryonic Stem Cells Driven by Two-Dimensional Materials</atitle><jtitle>ACS applied bio materials</jtitle><addtitle>ACS Appl. Bio Mater</addtitle><date>2018-08-20</date><risdate>2018</risdate><volume>1</volume><issue>2</issue><spage>210</spage><epage>215</epage><pages>210-215</pages><issn>2576-6422</issn><eissn>2576-6422</eissn><abstract>We observed a unique bioelectric signal of human embryonic stem cells using direct current–voltage measurements facilitated by few-layered 2D-MoS2 sheets. A 1.828 mA cell signal was achieved (2 orders of magnitude higher than previous electrical-based detection methods) as well as multiple cell reading cycles demonstrating I ∼ 1.9 mA. Native stem cell proliferation, viability, and pluripotency were preserved. Molecular dynamics simulations elucidated the origin of the 2D-MoS2 sheet-assisted increase in current flow. This paves the way for the development of a broadly applicable, fast, and damage-free stem cell detection method capable of identifying pluripotency with virtually any complementary-metal-oxide-semiconductor circuits.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35016385</pmid><doi>10.1021/acsabm.8b00085</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6710-0469</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2576-6422 |
ispartof | ACS applied bio materials, 2018-08, Vol.1 (2), p.210-215 |
issn | 2576-6422 2576-6422 |
language | eng |
recordid | cdi_proquest_miscellaneous_2619210389 |
source | ACS Publications |
title | Ultra-High Signal Detection of Human Embryonic Stem Cells Driven by Two-Dimensional Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-High%20Signal%20Detection%20of%20Human%20Embryonic%20Stem%20Cells%20Driven%20by%20Two-Dimensional%20Materials&rft.jtitle=ACS%20applied%20bio%20materials&rft.au=Chan,%20Sophia%20S.%20Y&rft.date=2018-08-20&rft.volume=1&rft.issue=2&rft.spage=210&rft.epage=215&rft.pages=210-215&rft.issn=2576-6422&rft.eissn=2576-6422&rft_id=info:doi/10.1021/acsabm.8b00085&rft_dat=%3Cproquest_cross%3E2619210389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619210389&rft_id=info:pmid/35016385&rfr_iscdi=true |