The Random Effects Warfarin Days’ Supply (REWarDS) Model: Development and Validation of a Novel Method for Estimating Exposure to Warfarin Using Administrative Data

Abstract Warfarin’s complex dosing is a significant barrier to measurement of its exposure in observational studies using population databases. Using population-based administrative data (1996–2019) from British Columbia, Canada, we developed a method based on statistical modeling (Random Effects Wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of epidemiology 2022-05, Vol.191 (6), p.1116-1124
Hauptverfasser: Salmasi, Shahrzad, Högg, Tanja, Safari, Abdollah, De Vera, Mary A, Lynd, Larry D, Koehoorn, Mieke, Barry, Arden R, Andrade, Jason G, Loewen, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1124
container_issue 6
container_start_page 1116
container_title American journal of epidemiology
container_volume 191
creator Salmasi, Shahrzad
Högg, Tanja
Safari, Abdollah
De Vera, Mary A
Lynd, Larry D
Koehoorn, Mieke
Barry, Arden R
Andrade, Jason G
Loewen, Peter
description Abstract Warfarin’s complex dosing is a significant barrier to measurement of its exposure in observational studies using population databases. Using population-based administrative data (1996–2019) from British Columbia, Canada, we developed a method based on statistical modeling (Random Effects Warfarin Days’ Supply (REWarDS)) that involves fitting a random-effects linear regression model to patients’ cumulative dosage over time for estimation of warfarin exposure. Model parameters included a minimal universally available set of variables from prescription records for estimation of patients’ individualized average daily doses of warfarin. REWarDS estimates were validated against a reference standard (manual calculation of the daily dose using the free-text administration instructions entered by the dispensing pharmacist) and compared with alternative methods (fixed window, fixed tablet, defined daily dose, and reverse wait time distribution) using Pearson’s correlation coefficient (r), the intraclass correlation coefficient, and the root mean squared error. REWarDS-estimated days’ supply showed strong correlation and agreement with the reference standard (r = 0.90 (95% confidence interval (CI): 0.90, 0.90); intraclass correlation coefficient = 0.95 (95% CI: 0.94, 0.95); root mean squared error = 8.24 days) and performed better than all of the alternative methods. REWarDS-estimated days’ supply was valid and more accurate than estimates from all other available methods. REWarDS is expected to confer optimal precision in studies measuring warfarin exposure using administrative data.
doi_str_mv 10.1093/aje/kwab295
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2619208394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/aje/kwab295</oup_id><sourcerecordid>2675845320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-d3ba87af33048807621487b9d0f400419ec6601e73d9503b9f1b72a1847c0d6d3</originalsourceid><addsrcrecordid>eNp90ctu1DAUBmALgehQWLFHlpBQURV6fElis6s6oUVqQeoFlpET2zRDEgfbKcyO1-AFeLA-Ca5mAIkFKy_Op99H50foKYFXBCQ7UCtz8PmraqjM76EF4WWRFTQv7qMFANBM0oLuoEchrAAIkTk8RDssB5ILEAv08_La4HM1ajfgylrTxoA_Km-V70a8VOtw-_0HvpinqV_jvfMqjZYXL_GZ06Z_jZfmxvRuGswYcYrAH1TfaRU7N2JnscLvXJrjMxOvncbWeVyF2A0JjJ9w9W1yYfYGR_f3w6twNzrUQzd2Ifokb0zaIqrH6IFVfTBPtu8uunpTXR6dZKfvj98eHZ5mLeMiZpo1SpTKMgZcCCgLSrgoG6nBcgBOpGmLAogpmU6HYI20pCmpIoKXLehCs120t8mdvPsymxDroQut6Xs1GjeHmhZEUhBM8kSf_0NXbvZj2i6pMhc8ZxSS2t-o1rsQvLH15NMJ_LomUN_VV6f66m19ST_bZs7NYPQf-7uvBF5sgJun_yb9AipipGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675845320</pqid></control><display><type>article</type><title>The Random Effects Warfarin Days’ Supply (REWarDS) Model: Development and Validation of a Novel Method for Estimating Exposure to Warfarin Using Administrative Data</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Salmasi, Shahrzad ; Högg, Tanja ; Safari, Abdollah ; De Vera, Mary A ; Lynd, Larry D ; Koehoorn, Mieke ; Barry, Arden R ; Andrade, Jason G ; Loewen, Peter</creator><creatorcontrib>Salmasi, Shahrzad ; Högg, Tanja ; Safari, Abdollah ; De Vera, Mary A ; Lynd, Larry D ; Koehoorn, Mieke ; Barry, Arden R ; Andrade, Jason G ; Loewen, Peter</creatorcontrib><description>Abstract Warfarin’s complex dosing is a significant barrier to measurement of its exposure in observational studies using population databases. Using population-based administrative data (1996–2019) from British Columbia, Canada, we developed a method based on statistical modeling (Random Effects Warfarin Days’ Supply (REWarDS)) that involves fitting a random-effects linear regression model to patients’ cumulative dosage over time for estimation of warfarin exposure. Model parameters included a minimal universally available set of variables from prescription records for estimation of patients’ individualized average daily doses of warfarin. REWarDS estimates were validated against a reference standard (manual calculation of the daily dose using the free-text administration instructions entered by the dispensing pharmacist) and compared with alternative methods (fixed window, fixed tablet, defined daily dose, and reverse wait time distribution) using Pearson’s correlation coefficient (r), the intraclass correlation coefficient, and the root mean squared error. REWarDS-estimated days’ supply showed strong correlation and agreement with the reference standard (r = 0.90 (95% confidence interval (CI): 0.90, 0.90); intraclass correlation coefficient = 0.95 (95% CI: 0.94, 0.95); root mean squared error = 8.24 days) and performed better than all of the alternative methods. REWarDS-estimated days’ supply was valid and more accurate than estimates from all other available methods. REWarDS is expected to confer optimal precision in studies measuring warfarin exposure using administrative data.</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/aje/kwab295</identifier><identifier>PMID: 35015808</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Anticoagulants ; British Columbia ; Confidence intervals ; Correlation coefficient ; Correlation coefficients ; Dosage ; Drug Prescriptions ; Estimates ; Estimation ; Exposure ; Humans ; Linear Models ; Mathematical models ; Population studies ; Regression models ; Reward ; Root-mean-square errors ; Statistical analysis ; Statistical models ; Warfarin</subject><ispartof>American journal of epidemiology, 2022-05, Vol.191 (6), p.1116-1124</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-d3ba87af33048807621487b9d0f400419ec6601e73d9503b9f1b72a1847c0d6d3</citedby><cites>FETCH-LOGICAL-c348t-d3ba87af33048807621487b9d0f400419ec6601e73d9503b9f1b72a1847c0d6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35015808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salmasi, Shahrzad</creatorcontrib><creatorcontrib>Högg, Tanja</creatorcontrib><creatorcontrib>Safari, Abdollah</creatorcontrib><creatorcontrib>De Vera, Mary A</creatorcontrib><creatorcontrib>Lynd, Larry D</creatorcontrib><creatorcontrib>Koehoorn, Mieke</creatorcontrib><creatorcontrib>Barry, Arden R</creatorcontrib><creatorcontrib>Andrade, Jason G</creatorcontrib><creatorcontrib>Loewen, Peter</creatorcontrib><title>The Random Effects Warfarin Days’ Supply (REWarDS) Model: Development and Validation of a Novel Method for Estimating Exposure to Warfarin Using Administrative Data</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>Abstract Warfarin’s complex dosing is a significant barrier to measurement of its exposure in observational studies using population databases. Using population-based administrative data (1996–2019) from British Columbia, Canada, we developed a method based on statistical modeling (Random Effects Warfarin Days’ Supply (REWarDS)) that involves fitting a random-effects linear regression model to patients’ cumulative dosage over time for estimation of warfarin exposure. Model parameters included a minimal universally available set of variables from prescription records for estimation of patients’ individualized average daily doses of warfarin. REWarDS estimates were validated against a reference standard (manual calculation of the daily dose using the free-text administration instructions entered by the dispensing pharmacist) and compared with alternative methods (fixed window, fixed tablet, defined daily dose, and reverse wait time distribution) using Pearson’s correlation coefficient (r), the intraclass correlation coefficient, and the root mean squared error. REWarDS-estimated days’ supply showed strong correlation and agreement with the reference standard (r = 0.90 (95% confidence interval (CI): 0.90, 0.90); intraclass correlation coefficient = 0.95 (95% CI: 0.94, 0.95); root mean squared error = 8.24 days) and performed better than all of the alternative methods. REWarDS-estimated days’ supply was valid and more accurate than estimates from all other available methods. REWarDS is expected to confer optimal precision in studies measuring warfarin exposure using administrative data.</description><subject>Anticoagulants</subject><subject>British Columbia</subject><subject>Confidence intervals</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Dosage</subject><subject>Drug Prescriptions</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Exposure</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Mathematical models</subject><subject>Population studies</subject><subject>Regression models</subject><subject>Reward</subject><subject>Root-mean-square errors</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Warfarin</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90ctu1DAUBmALgehQWLFHlpBQURV6fElis6s6oUVqQeoFlpET2zRDEgfbKcyO1-AFeLA-Ca5mAIkFKy_Op99H50foKYFXBCQ7UCtz8PmraqjM76EF4WWRFTQv7qMFANBM0oLuoEchrAAIkTk8RDssB5ILEAv08_La4HM1ajfgylrTxoA_Km-V70a8VOtw-_0HvpinqV_jvfMqjZYXL_GZ06Z_jZfmxvRuGswYcYrAH1TfaRU7N2JnscLvXJrjMxOvncbWeVyF2A0JjJ9w9W1yYfYGR_f3w6twNzrUQzd2Ifokb0zaIqrH6IFVfTBPtu8uunpTXR6dZKfvj98eHZ5mLeMiZpo1SpTKMgZcCCgLSrgoG6nBcgBOpGmLAogpmU6HYI20pCmpIoKXLehCs120t8mdvPsymxDroQut6Xs1GjeHmhZEUhBM8kSf_0NXbvZj2i6pMhc8ZxSS2t-o1rsQvLH15NMJ_LomUN_VV6f66m19ST_bZs7NYPQf-7uvBF5sgJun_yb9AipipGE</recordid><startdate>20220520</startdate><enddate>20220520</enddate><creator>Salmasi, Shahrzad</creator><creator>Högg, Tanja</creator><creator>Safari, Abdollah</creator><creator>De Vera, Mary A</creator><creator>Lynd, Larry D</creator><creator>Koehoorn, Mieke</creator><creator>Barry, Arden R</creator><creator>Andrade, Jason G</creator><creator>Loewen, Peter</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20220520</creationdate><title>The Random Effects Warfarin Days’ Supply (REWarDS) Model: Development and Validation of a Novel Method for Estimating Exposure to Warfarin Using Administrative Data</title><author>Salmasi, Shahrzad ; Högg, Tanja ; Safari, Abdollah ; De Vera, Mary A ; Lynd, Larry D ; Koehoorn, Mieke ; Barry, Arden R ; Andrade, Jason G ; Loewen, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-d3ba87af33048807621487b9d0f400419ec6601e73d9503b9f1b72a1847c0d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anticoagulants</topic><topic>British Columbia</topic><topic>Confidence intervals</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Dosage</topic><topic>Drug Prescriptions</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Exposure</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Mathematical models</topic><topic>Population studies</topic><topic>Regression models</topic><topic>Reward</topic><topic>Root-mean-square errors</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Warfarin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salmasi, Shahrzad</creatorcontrib><creatorcontrib>Högg, Tanja</creatorcontrib><creatorcontrib>Safari, Abdollah</creatorcontrib><creatorcontrib>De Vera, Mary A</creatorcontrib><creatorcontrib>Lynd, Larry D</creatorcontrib><creatorcontrib>Koehoorn, Mieke</creatorcontrib><creatorcontrib>Barry, Arden R</creatorcontrib><creatorcontrib>Andrade, Jason G</creatorcontrib><creatorcontrib>Loewen, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salmasi, Shahrzad</au><au>Högg, Tanja</au><au>Safari, Abdollah</au><au>De Vera, Mary A</au><au>Lynd, Larry D</au><au>Koehoorn, Mieke</au><au>Barry, Arden R</au><au>Andrade, Jason G</au><au>Loewen, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Random Effects Warfarin Days’ Supply (REWarDS) Model: Development and Validation of a Novel Method for Estimating Exposure to Warfarin Using Administrative Data</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>2022-05-20</date><risdate>2022</risdate><volume>191</volume><issue>6</issue><spage>1116</spage><epage>1124</epage><pages>1116-1124</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><abstract>Abstract Warfarin’s complex dosing is a significant barrier to measurement of its exposure in observational studies using population databases. Using population-based administrative data (1996–2019) from British Columbia, Canada, we developed a method based on statistical modeling (Random Effects Warfarin Days’ Supply (REWarDS)) that involves fitting a random-effects linear regression model to patients’ cumulative dosage over time for estimation of warfarin exposure. Model parameters included a minimal universally available set of variables from prescription records for estimation of patients’ individualized average daily doses of warfarin. REWarDS estimates were validated against a reference standard (manual calculation of the daily dose using the free-text administration instructions entered by the dispensing pharmacist) and compared with alternative methods (fixed window, fixed tablet, defined daily dose, and reverse wait time distribution) using Pearson’s correlation coefficient (r), the intraclass correlation coefficient, and the root mean squared error. REWarDS-estimated days’ supply showed strong correlation and agreement with the reference standard (r = 0.90 (95% confidence interval (CI): 0.90, 0.90); intraclass correlation coefficient = 0.95 (95% CI: 0.94, 0.95); root mean squared error = 8.24 days) and performed better than all of the alternative methods. REWarDS-estimated days’ supply was valid and more accurate than estimates from all other available methods. REWarDS is expected to confer optimal precision in studies measuring warfarin exposure using administrative data.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>35015808</pmid><doi>10.1093/aje/kwab295</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9262
ispartof American journal of epidemiology, 2022-05, Vol.191 (6), p.1116-1124
issn 0002-9262
1476-6256
language eng
recordid cdi_proquest_miscellaneous_2619208394
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Anticoagulants
British Columbia
Confidence intervals
Correlation coefficient
Correlation coefficients
Dosage
Drug Prescriptions
Estimates
Estimation
Exposure
Humans
Linear Models
Mathematical models
Population studies
Regression models
Reward
Root-mean-square errors
Statistical analysis
Statistical models
Warfarin
title The Random Effects Warfarin Days’ Supply (REWarDS) Model: Development and Validation of a Novel Method for Estimating Exposure to Warfarin Using Administrative Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T02%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Random%20Effects%20Warfarin%20Days%E2%80%99%20Supply%20(REWarDS)%20Model:%20Development%20and%20Validation%20of%20a%20Novel%20Method%20for%20Estimating%20Exposure%20to%20Warfarin%20Using%20Administrative%20Data&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=Salmasi,%20Shahrzad&rft.date=2022-05-20&rft.volume=191&rft.issue=6&rft.spage=1116&rft.epage=1124&rft.pages=1116-1124&rft.issn=0002-9262&rft.eissn=1476-6256&rft_id=info:doi/10.1093/aje/kwab295&rft_dat=%3Cproquest_cross%3E2675845320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675845320&rft_id=info:pmid/35015808&rft_oup_id=10.1093/aje/kwab295&rfr_iscdi=true