The Random Effects Warfarin Days’ Supply (REWarDS) Model: Development and Validation of a Novel Method for Estimating Exposure to Warfarin Using Administrative Data
Abstract Warfarin’s complex dosing is a significant barrier to measurement of its exposure in observational studies using population databases. Using population-based administrative data (1996–2019) from British Columbia, Canada, we developed a method based on statistical modeling (Random Effects Wa...
Gespeichert in:
Veröffentlicht in: | American journal of epidemiology 2022-05, Vol.191 (6), p.1116-1124 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1124 |
---|---|
container_issue | 6 |
container_start_page | 1116 |
container_title | American journal of epidemiology |
container_volume | 191 |
creator | Salmasi, Shahrzad Högg, Tanja Safari, Abdollah De Vera, Mary A Lynd, Larry D Koehoorn, Mieke Barry, Arden R Andrade, Jason G Loewen, Peter |
description | Abstract
Warfarin’s complex dosing is a significant barrier to measurement of its exposure in observational studies using population databases. Using population-based administrative data (1996–2019) from British Columbia, Canada, we developed a method based on statistical modeling (Random Effects Warfarin Days’ Supply (REWarDS)) that involves fitting a random-effects linear regression model to patients’ cumulative dosage over time for estimation of warfarin exposure. Model parameters included a minimal universally available set of variables from prescription records for estimation of patients’ individualized average daily doses of warfarin. REWarDS estimates were validated against a reference standard (manual calculation of the daily dose using the free-text administration instructions entered by the dispensing pharmacist) and compared with alternative methods (fixed window, fixed tablet, defined daily dose, and reverse wait time distribution) using Pearson’s correlation coefficient (r), the intraclass correlation coefficient, and the root mean squared error. REWarDS-estimated days’ supply showed strong correlation and agreement with the reference standard (r = 0.90 (95% confidence interval (CI): 0.90, 0.90); intraclass correlation coefficient = 0.95 (95% CI: 0.94, 0.95); root mean squared error = 8.24 days) and performed better than all of the alternative methods. REWarDS-estimated days’ supply was valid and more accurate than estimates from all other available methods. REWarDS is expected to confer optimal precision in studies measuring warfarin exposure using administrative data. |
doi_str_mv | 10.1093/aje/kwab295 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2619208394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/aje/kwab295</oup_id><sourcerecordid>2675845320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-d3ba87af33048807621487b9d0f400419ec6601e73d9503b9f1b72a1847c0d6d3</originalsourceid><addsrcrecordid>eNp90ctu1DAUBmALgehQWLFHlpBQURV6fElis6s6oUVqQeoFlpET2zRDEgfbKcyO1-AFeLA-Ca5mAIkFKy_Op99H50foKYFXBCQ7UCtz8PmraqjM76EF4WWRFTQv7qMFANBM0oLuoEchrAAIkTk8RDssB5ILEAv08_La4HM1ajfgylrTxoA_Km-V70a8VOtw-_0HvpinqV_jvfMqjZYXL_GZ06Z_jZfmxvRuGswYcYrAH1TfaRU7N2JnscLvXJrjMxOvncbWeVyF2A0JjJ9w9W1yYfYGR_f3w6twNzrUQzd2Ifokb0zaIqrH6IFVfTBPtu8uunpTXR6dZKfvj98eHZ5mLeMiZpo1SpTKMgZcCCgLSrgoG6nBcgBOpGmLAogpmU6HYI20pCmpIoKXLehCs120t8mdvPsymxDroQut6Xs1GjeHmhZEUhBM8kSf_0NXbvZj2i6pMhc8ZxSS2t-o1rsQvLH15NMJ_LomUN_VV6f66m19ST_bZs7NYPQf-7uvBF5sgJun_yb9AipipGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675845320</pqid></control><display><type>article</type><title>The Random Effects Warfarin Days’ Supply (REWarDS) Model: Development and Validation of a Novel Method for Estimating Exposure to Warfarin Using Administrative Data</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Salmasi, Shahrzad ; Högg, Tanja ; Safari, Abdollah ; De Vera, Mary A ; Lynd, Larry D ; Koehoorn, Mieke ; Barry, Arden R ; Andrade, Jason G ; Loewen, Peter</creator><creatorcontrib>Salmasi, Shahrzad ; Högg, Tanja ; Safari, Abdollah ; De Vera, Mary A ; Lynd, Larry D ; Koehoorn, Mieke ; Barry, Arden R ; Andrade, Jason G ; Loewen, Peter</creatorcontrib><description>Abstract
Warfarin’s complex dosing is a significant barrier to measurement of its exposure in observational studies using population databases. Using population-based administrative data (1996–2019) from British Columbia, Canada, we developed a method based on statistical modeling (Random Effects Warfarin Days’ Supply (REWarDS)) that involves fitting a random-effects linear regression model to patients’ cumulative dosage over time for estimation of warfarin exposure. Model parameters included a minimal universally available set of variables from prescription records for estimation of patients’ individualized average daily doses of warfarin. REWarDS estimates were validated against a reference standard (manual calculation of the daily dose using the free-text administration instructions entered by the dispensing pharmacist) and compared with alternative methods (fixed window, fixed tablet, defined daily dose, and reverse wait time distribution) using Pearson’s correlation coefficient (r), the intraclass correlation coefficient, and the root mean squared error. REWarDS-estimated days’ supply showed strong correlation and agreement with the reference standard (r = 0.90 (95% confidence interval (CI): 0.90, 0.90); intraclass correlation coefficient = 0.95 (95% CI: 0.94, 0.95); root mean squared error = 8.24 days) and performed better than all of the alternative methods. REWarDS-estimated days’ supply was valid and more accurate than estimates from all other available methods. REWarDS is expected to confer optimal precision in studies measuring warfarin exposure using administrative data.</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/aje/kwab295</identifier><identifier>PMID: 35015808</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Anticoagulants ; British Columbia ; Confidence intervals ; Correlation coefficient ; Correlation coefficients ; Dosage ; Drug Prescriptions ; Estimates ; Estimation ; Exposure ; Humans ; Linear Models ; Mathematical models ; Population studies ; Regression models ; Reward ; Root-mean-square errors ; Statistical analysis ; Statistical models ; Warfarin</subject><ispartof>American journal of epidemiology, 2022-05, Vol.191 (6), p.1116-1124</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-d3ba87af33048807621487b9d0f400419ec6601e73d9503b9f1b72a1847c0d6d3</citedby><cites>FETCH-LOGICAL-c348t-d3ba87af33048807621487b9d0f400419ec6601e73d9503b9f1b72a1847c0d6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35015808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salmasi, Shahrzad</creatorcontrib><creatorcontrib>Högg, Tanja</creatorcontrib><creatorcontrib>Safari, Abdollah</creatorcontrib><creatorcontrib>De Vera, Mary A</creatorcontrib><creatorcontrib>Lynd, Larry D</creatorcontrib><creatorcontrib>Koehoorn, Mieke</creatorcontrib><creatorcontrib>Barry, Arden R</creatorcontrib><creatorcontrib>Andrade, Jason G</creatorcontrib><creatorcontrib>Loewen, Peter</creatorcontrib><title>The Random Effects Warfarin Days’ Supply (REWarDS) Model: Development and Validation of a Novel Method for Estimating Exposure to Warfarin Using Administrative Data</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>Abstract
Warfarin’s complex dosing is a significant barrier to measurement of its exposure in observational studies using population databases. Using population-based administrative data (1996–2019) from British Columbia, Canada, we developed a method based on statistical modeling (Random Effects Warfarin Days’ Supply (REWarDS)) that involves fitting a random-effects linear regression model to patients’ cumulative dosage over time for estimation of warfarin exposure. Model parameters included a minimal universally available set of variables from prescription records for estimation of patients’ individualized average daily doses of warfarin. REWarDS estimates were validated against a reference standard (manual calculation of the daily dose using the free-text administration instructions entered by the dispensing pharmacist) and compared with alternative methods (fixed window, fixed tablet, defined daily dose, and reverse wait time distribution) using Pearson’s correlation coefficient (r), the intraclass correlation coefficient, and the root mean squared error. REWarDS-estimated days’ supply showed strong correlation and agreement with the reference standard (r = 0.90 (95% confidence interval (CI): 0.90, 0.90); intraclass correlation coefficient = 0.95 (95% CI: 0.94, 0.95); root mean squared error = 8.24 days) and performed better than all of the alternative methods. REWarDS-estimated days’ supply was valid and more accurate than estimates from all other available methods. REWarDS is expected to confer optimal precision in studies measuring warfarin exposure using administrative data.</description><subject>Anticoagulants</subject><subject>British Columbia</subject><subject>Confidence intervals</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Dosage</subject><subject>Drug Prescriptions</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Exposure</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Mathematical models</subject><subject>Population studies</subject><subject>Regression models</subject><subject>Reward</subject><subject>Root-mean-square errors</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Warfarin</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90ctu1DAUBmALgehQWLFHlpBQURV6fElis6s6oUVqQeoFlpET2zRDEgfbKcyO1-AFeLA-Ca5mAIkFKy_Op99H50foKYFXBCQ7UCtz8PmraqjM76EF4WWRFTQv7qMFANBM0oLuoEchrAAIkTk8RDssB5ILEAv08_La4HM1ajfgylrTxoA_Km-V70a8VOtw-_0HvpinqV_jvfMqjZYXL_GZ06Z_jZfmxvRuGswYcYrAH1TfaRU7N2JnscLvXJrjMxOvncbWeVyF2A0JjJ9w9W1yYfYGR_f3w6twNzrUQzd2Ifokb0zaIqrH6IFVfTBPtu8uunpTXR6dZKfvj98eHZ5mLeMiZpo1SpTKMgZcCCgLSrgoG6nBcgBOpGmLAogpmU6HYI20pCmpIoKXLehCs120t8mdvPsymxDroQut6Xs1GjeHmhZEUhBM8kSf_0NXbvZj2i6pMhc8ZxSS2t-o1rsQvLH15NMJ_LomUN_VV6f66m19ST_bZs7NYPQf-7uvBF5sgJun_yb9AipipGE</recordid><startdate>20220520</startdate><enddate>20220520</enddate><creator>Salmasi, Shahrzad</creator><creator>Högg, Tanja</creator><creator>Safari, Abdollah</creator><creator>De Vera, Mary A</creator><creator>Lynd, Larry D</creator><creator>Koehoorn, Mieke</creator><creator>Barry, Arden R</creator><creator>Andrade, Jason G</creator><creator>Loewen, Peter</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T2</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20220520</creationdate><title>The Random Effects Warfarin Days’ Supply (REWarDS) Model: Development and Validation of a Novel Method for Estimating Exposure to Warfarin Using Administrative Data</title><author>Salmasi, Shahrzad ; Högg, Tanja ; Safari, Abdollah ; De Vera, Mary A ; Lynd, Larry D ; Koehoorn, Mieke ; Barry, Arden R ; Andrade, Jason G ; Loewen, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-d3ba87af33048807621487b9d0f400419ec6601e73d9503b9f1b72a1847c0d6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anticoagulants</topic><topic>British Columbia</topic><topic>Confidence intervals</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Dosage</topic><topic>Drug Prescriptions</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Exposure</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Mathematical models</topic><topic>Population studies</topic><topic>Regression models</topic><topic>Reward</topic><topic>Root-mean-square errors</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Warfarin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salmasi, Shahrzad</creatorcontrib><creatorcontrib>Högg, Tanja</creatorcontrib><creatorcontrib>Safari, Abdollah</creatorcontrib><creatorcontrib>De Vera, Mary A</creatorcontrib><creatorcontrib>Lynd, Larry D</creatorcontrib><creatorcontrib>Koehoorn, Mieke</creatorcontrib><creatorcontrib>Barry, Arden R</creatorcontrib><creatorcontrib>Andrade, Jason G</creatorcontrib><creatorcontrib>Loewen, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salmasi, Shahrzad</au><au>Högg, Tanja</au><au>Safari, Abdollah</au><au>De Vera, Mary A</au><au>Lynd, Larry D</au><au>Koehoorn, Mieke</au><au>Barry, Arden R</au><au>Andrade, Jason G</au><au>Loewen, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Random Effects Warfarin Days’ Supply (REWarDS) Model: Development and Validation of a Novel Method for Estimating Exposure to Warfarin Using Administrative Data</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>2022-05-20</date><risdate>2022</risdate><volume>191</volume><issue>6</issue><spage>1116</spage><epage>1124</epage><pages>1116-1124</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><abstract>Abstract
Warfarin’s complex dosing is a significant barrier to measurement of its exposure in observational studies using population databases. Using population-based administrative data (1996–2019) from British Columbia, Canada, we developed a method based on statistical modeling (Random Effects Warfarin Days’ Supply (REWarDS)) that involves fitting a random-effects linear regression model to patients’ cumulative dosage over time for estimation of warfarin exposure. Model parameters included a minimal universally available set of variables from prescription records for estimation of patients’ individualized average daily doses of warfarin. REWarDS estimates were validated against a reference standard (manual calculation of the daily dose using the free-text administration instructions entered by the dispensing pharmacist) and compared with alternative methods (fixed window, fixed tablet, defined daily dose, and reverse wait time distribution) using Pearson’s correlation coefficient (r), the intraclass correlation coefficient, and the root mean squared error. REWarDS-estimated days’ supply showed strong correlation and agreement with the reference standard (r = 0.90 (95% confidence interval (CI): 0.90, 0.90); intraclass correlation coefficient = 0.95 (95% CI: 0.94, 0.95); root mean squared error = 8.24 days) and performed better than all of the alternative methods. REWarDS-estimated days’ supply was valid and more accurate than estimates from all other available methods. REWarDS is expected to confer optimal precision in studies measuring warfarin exposure using administrative data.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>35015808</pmid><doi>10.1093/aje/kwab295</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9262 |
ispartof | American journal of epidemiology, 2022-05, Vol.191 (6), p.1116-1124 |
issn | 0002-9262 1476-6256 |
language | eng |
recordid | cdi_proquest_miscellaneous_2619208394 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Anticoagulants British Columbia Confidence intervals Correlation coefficient Correlation coefficients Dosage Drug Prescriptions Estimates Estimation Exposure Humans Linear Models Mathematical models Population studies Regression models Reward Root-mean-square errors Statistical analysis Statistical models Warfarin |
title | The Random Effects Warfarin Days’ Supply (REWarDS) Model: Development and Validation of a Novel Method for Estimating Exposure to Warfarin Using Administrative Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T02%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Random%20Effects%20Warfarin%20Days%E2%80%99%20Supply%20(REWarDS)%20Model:%20Development%20and%20Validation%20of%20a%20Novel%20Method%20for%20Estimating%20Exposure%20to%20Warfarin%20Using%20Administrative%20Data&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=Salmasi,%20Shahrzad&rft.date=2022-05-20&rft.volume=191&rft.issue=6&rft.spage=1116&rft.epage=1124&rft.pages=1116-1124&rft.issn=0002-9262&rft.eissn=1476-6256&rft_id=info:doi/10.1093/aje/kwab295&rft_dat=%3Cproquest_cross%3E2675845320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675845320&rft_id=info:pmid/35015808&rft_oup_id=10.1093/aje/kwab295&rfr_iscdi=true |