Layer-by-Layer Deposited Hybrid Polymer Coatings Based on Polysaccharides and Zwitterionic Silanes with Marine Antifouling Properties

Polyelectrolyte multilayer (PEM) assembly is a versatile tool to construct low-fouling coatings. For application in the marine environment, their structure needs to be stabilized by covalent linkage. Here, we introduce an approach for spin coating of silane-based sol–gel chemistries using layer-by-l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied bio materials 2021-03, Vol.4 (3), p.2385-2397
Hauptverfasser: Yu, Wenfa, Wang, Yongxiang, Gnutt, Patricia, Wanka, Robin, Krause, Lutz M. K, Finlay, John A, Clare, Anthony S, Rosenhahn, Axel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2397
container_issue 3
container_start_page 2385
container_title ACS applied bio materials
container_volume 4
creator Yu, Wenfa
Wang, Yongxiang
Gnutt, Patricia
Wanka, Robin
Krause, Lutz M. K
Finlay, John A
Clare, Anthony S
Rosenhahn, Axel
description Polyelectrolyte multilayer (PEM) assembly is a versatile tool to construct low-fouling coatings. For application in the marine environment, their structure needs to be stabilized by covalent linkage. Here, we introduce an approach for spin coating of silane-based sol–gel chemistries using layer-by-layer assembly of polysaccharide-based hybrid polymer coatings (LBLHPs). The silane sol–gel chemistry allows the films to be cross-linked under water-based and mild reaction conditions. Two different silanes were used for this purpose, a conventional triethoxymethyl silane and a de novo synthesized zwitterionic silane. The polysaccharide–silane hybrid polymer coatings were thoroughly characterized with spectroscopic ellipsometry, water contact angle (WCA) goniometry, attenuated total reflection–Fourier transform infrared spectroscopy, and atomic force microscopy. The coatings showed good stability in seawater, smooth surfaces, a high degree of hydration, and WCAs below or close to the Berg limit. LBLHPs showed low-fouling properties in biological assays against nonspecific protein adsorption, attachment of the diatom Navicula perminuta, and settlement of zoospores of the macroalga Ulva linza.
doi_str_mv 10.1021/acsabm.0c01253
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2618906016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618906016</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-22f1917053eb1e928420515db7926ce84539f1ddc77653c6334822ec75b333263</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoTuauHiVHETrzo2nX45w_JkwcqBcvJU2_uoy2mUmL9A_w_zZbp3jxlI-8z_eSPAidUTKmhNErqZzMqjFRhDLBD9AJE3EURCFjh3_mARo5tyaEMEI4nSTHaMAFoSEXyQn6WsgObJB1wW7AN7AxTjeQ43mXWZ3jpSm7ygczIxtdvzt8LZ1PTb1LnFRqJT0HDss6x2-fumnAalNrhZ91KWsf-LsVfvRUDXhaN7owbemr8NKaDdhGgztFR4UsHYz25xC93t2-zObB4un-YTZdBJLHpAkYK2hCYyI4ZBQSNgkZEVTkWZywSMEkFDwpaJ6rOI4EVxHn4YQxULHIOOcs4kN00fdurPlowTVppZ2CcvtO07qURd4PiQjdouMeVdY4Z6FIN1ZX0nYpJenWftrbT_f2_cL5vrvNKsh_8R_XHrjsAb-Yrk1ra__V_9q-Afrsj38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618906016</pqid></control><display><type>article</type><title>Layer-by-Layer Deposited Hybrid Polymer Coatings Based on Polysaccharides and Zwitterionic Silanes with Marine Antifouling Properties</title><source>ACS Publications</source><source>MEDLINE</source><creator>Yu, Wenfa ; Wang, Yongxiang ; Gnutt, Patricia ; Wanka, Robin ; Krause, Lutz M. K ; Finlay, John A ; Clare, Anthony S ; Rosenhahn, Axel</creator><creatorcontrib>Yu, Wenfa ; Wang, Yongxiang ; Gnutt, Patricia ; Wanka, Robin ; Krause, Lutz M. K ; Finlay, John A ; Clare, Anthony S ; Rosenhahn, Axel</creatorcontrib><description>Polyelectrolyte multilayer (PEM) assembly is a versatile tool to construct low-fouling coatings. For application in the marine environment, their structure needs to be stabilized by covalent linkage. Here, we introduce an approach for spin coating of silane-based sol–gel chemistries using layer-by-layer assembly of polysaccharide-based hybrid polymer coatings (LBLHPs). The silane sol–gel chemistry allows the films to be cross-linked under water-based and mild reaction conditions. Two different silanes were used for this purpose, a conventional triethoxymethyl silane and a de novo synthesized zwitterionic silane. The polysaccharide–silane hybrid polymer coatings were thoroughly characterized with spectroscopic ellipsometry, water contact angle (WCA) goniometry, attenuated total reflection–Fourier transform infrared spectroscopy, and atomic force microscopy. The coatings showed good stability in seawater, smooth surfaces, a high degree of hydration, and WCAs below or close to the Berg limit. LBLHPs showed low-fouling properties in biological assays against nonspecific protein adsorption, attachment of the diatom Navicula perminuta, and settlement of zoospores of the macroalga Ulva linza.</description><identifier>ISSN: 2576-6422</identifier><identifier>EISSN: 2576-6422</identifier><identifier>DOI: 10.1021/acsabm.0c01253</identifier><identifier>PMID: 35014359</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biofouling - prevention &amp; control ; Carbohydrate Conformation ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - pharmacology ; Diatoms - drug effects ; Materials Testing ; Particle Size ; Polysaccharides - chemistry ; Polysaccharides - pharmacology ; Silanes - chemistry ; Silanes - pharmacology ; Ulva - drug effects</subject><ispartof>ACS applied bio materials, 2021-03, Vol.4 (3), p.2385-2397</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-22f1917053eb1e928420515db7926ce84539f1ddc77653c6334822ec75b333263</citedby><cites>FETCH-LOGICAL-a370t-22f1917053eb1e928420515db7926ce84539f1ddc77653c6334822ec75b333263</cites><orcidid>0000-0002-7692-9583 ; 0000-0002-1413-0629 ; 0000-0001-8892-9399 ; 0000-0001-7531-0044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsabm.0c01253$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsabm.0c01253$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35014359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Wenfa</creatorcontrib><creatorcontrib>Wang, Yongxiang</creatorcontrib><creatorcontrib>Gnutt, Patricia</creatorcontrib><creatorcontrib>Wanka, Robin</creatorcontrib><creatorcontrib>Krause, Lutz M. K</creatorcontrib><creatorcontrib>Finlay, John A</creatorcontrib><creatorcontrib>Clare, Anthony S</creatorcontrib><creatorcontrib>Rosenhahn, Axel</creatorcontrib><title>Layer-by-Layer Deposited Hybrid Polymer Coatings Based on Polysaccharides and Zwitterionic Silanes with Marine Antifouling Properties</title><title>ACS applied bio materials</title><addtitle>ACS Appl. Bio Mater</addtitle><description>Polyelectrolyte multilayer (PEM) assembly is a versatile tool to construct low-fouling coatings. For application in the marine environment, their structure needs to be stabilized by covalent linkage. Here, we introduce an approach for spin coating of silane-based sol–gel chemistries using layer-by-layer assembly of polysaccharide-based hybrid polymer coatings (LBLHPs). The silane sol–gel chemistry allows the films to be cross-linked under water-based and mild reaction conditions. Two different silanes were used for this purpose, a conventional triethoxymethyl silane and a de novo synthesized zwitterionic silane. The polysaccharide–silane hybrid polymer coatings were thoroughly characterized with spectroscopic ellipsometry, water contact angle (WCA) goniometry, attenuated total reflection–Fourier transform infrared spectroscopy, and atomic force microscopy. The coatings showed good stability in seawater, smooth surfaces, a high degree of hydration, and WCAs below or close to the Berg limit. LBLHPs showed low-fouling properties in biological assays against nonspecific protein adsorption, attachment of the diatom Navicula perminuta, and settlement of zoospores of the macroalga Ulva linza.</description><subject>Biofouling - prevention &amp; control</subject><subject>Carbohydrate Conformation</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Diatoms - drug effects</subject><subject>Materials Testing</subject><subject>Particle Size</subject><subject>Polysaccharides - chemistry</subject><subject>Polysaccharides - pharmacology</subject><subject>Silanes - chemistry</subject><subject>Silanes - pharmacology</subject><subject>Ulva - drug effects</subject><issn>2576-6422</issn><issn>2576-6422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAYhoMoTuauHiVHETrzo2nX45w_JkwcqBcvJU2_uoy2mUmL9A_w_zZbp3jxlI-8z_eSPAidUTKmhNErqZzMqjFRhDLBD9AJE3EURCFjh3_mARo5tyaEMEI4nSTHaMAFoSEXyQn6WsgObJB1wW7AN7AxTjeQ43mXWZ3jpSm7ygczIxtdvzt8LZ1PTb1LnFRqJT0HDss6x2-fumnAalNrhZ91KWsf-LsVfvRUDXhaN7owbemr8NKaDdhGgztFR4UsHYz25xC93t2-zObB4un-YTZdBJLHpAkYK2hCYyI4ZBQSNgkZEVTkWZywSMEkFDwpaJ6rOI4EVxHn4YQxULHIOOcs4kN00fdurPlowTVppZ2CcvtO07qURd4PiQjdouMeVdY4Z6FIN1ZX0nYpJenWftrbT_f2_cL5vrvNKsh_8R_XHrjsAb-Yrk1ra__V_9q-Afrsj38</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Yu, Wenfa</creator><creator>Wang, Yongxiang</creator><creator>Gnutt, Patricia</creator><creator>Wanka, Robin</creator><creator>Krause, Lutz M. K</creator><creator>Finlay, John A</creator><creator>Clare, Anthony S</creator><creator>Rosenhahn, Axel</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7692-9583</orcidid><orcidid>https://orcid.org/0000-0002-1413-0629</orcidid><orcidid>https://orcid.org/0000-0001-8892-9399</orcidid><orcidid>https://orcid.org/0000-0001-7531-0044</orcidid></search><sort><creationdate>20210315</creationdate><title>Layer-by-Layer Deposited Hybrid Polymer Coatings Based on Polysaccharides and Zwitterionic Silanes with Marine Antifouling Properties</title><author>Yu, Wenfa ; Wang, Yongxiang ; Gnutt, Patricia ; Wanka, Robin ; Krause, Lutz M. K ; Finlay, John A ; Clare, Anthony S ; Rosenhahn, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-22f1917053eb1e928420515db7926ce84539f1ddc77653c6334822ec75b333263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biofouling - prevention &amp; control</topic><topic>Carbohydrate Conformation</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Diatoms - drug effects</topic><topic>Materials Testing</topic><topic>Particle Size</topic><topic>Polysaccharides - chemistry</topic><topic>Polysaccharides - pharmacology</topic><topic>Silanes - chemistry</topic><topic>Silanes - pharmacology</topic><topic>Ulva - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Wenfa</creatorcontrib><creatorcontrib>Wang, Yongxiang</creatorcontrib><creatorcontrib>Gnutt, Patricia</creatorcontrib><creatorcontrib>Wanka, Robin</creatorcontrib><creatorcontrib>Krause, Lutz M. K</creatorcontrib><creatorcontrib>Finlay, John A</creatorcontrib><creatorcontrib>Clare, Anthony S</creatorcontrib><creatorcontrib>Rosenhahn, Axel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied bio materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Wenfa</au><au>Wang, Yongxiang</au><au>Gnutt, Patricia</au><au>Wanka, Robin</au><au>Krause, Lutz M. K</au><au>Finlay, John A</au><au>Clare, Anthony S</au><au>Rosenhahn, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layer-by-Layer Deposited Hybrid Polymer Coatings Based on Polysaccharides and Zwitterionic Silanes with Marine Antifouling Properties</atitle><jtitle>ACS applied bio materials</jtitle><addtitle>ACS Appl. Bio Mater</addtitle><date>2021-03-15</date><risdate>2021</risdate><volume>4</volume><issue>3</issue><spage>2385</spage><epage>2397</epage><pages>2385-2397</pages><issn>2576-6422</issn><eissn>2576-6422</eissn><abstract>Polyelectrolyte multilayer (PEM) assembly is a versatile tool to construct low-fouling coatings. For application in the marine environment, their structure needs to be stabilized by covalent linkage. Here, we introduce an approach for spin coating of silane-based sol–gel chemistries using layer-by-layer assembly of polysaccharide-based hybrid polymer coatings (LBLHPs). The silane sol–gel chemistry allows the films to be cross-linked under water-based and mild reaction conditions. Two different silanes were used for this purpose, a conventional triethoxymethyl silane and a de novo synthesized zwitterionic silane. The polysaccharide–silane hybrid polymer coatings were thoroughly characterized with spectroscopic ellipsometry, water contact angle (WCA) goniometry, attenuated total reflection–Fourier transform infrared spectroscopy, and atomic force microscopy. The coatings showed good stability in seawater, smooth surfaces, a high degree of hydration, and WCAs below or close to the Berg limit. LBLHPs showed low-fouling properties in biological assays against nonspecific protein adsorption, attachment of the diatom Navicula perminuta, and settlement of zoospores of the macroalga Ulva linza.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35014359</pmid><doi>10.1021/acsabm.0c01253</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7692-9583</orcidid><orcidid>https://orcid.org/0000-0002-1413-0629</orcidid><orcidid>https://orcid.org/0000-0001-8892-9399</orcidid><orcidid>https://orcid.org/0000-0001-7531-0044</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2576-6422
ispartof ACS applied bio materials, 2021-03, Vol.4 (3), p.2385-2397
issn 2576-6422
2576-6422
language eng
recordid cdi_proquest_miscellaneous_2618906016
source ACS Publications; MEDLINE
subjects Biofouling - prevention & control
Carbohydrate Conformation
Coated Materials, Biocompatible - chemistry
Coated Materials, Biocompatible - pharmacology
Diatoms - drug effects
Materials Testing
Particle Size
Polysaccharides - chemistry
Polysaccharides - pharmacology
Silanes - chemistry
Silanes - pharmacology
Ulva - drug effects
title Layer-by-Layer Deposited Hybrid Polymer Coatings Based on Polysaccharides and Zwitterionic Silanes with Marine Antifouling Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T13%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layer-by-Layer%20Deposited%20Hybrid%20Polymer%20Coatings%20Based%20on%20Polysaccharides%20and%20Zwitterionic%20Silanes%20with%20Marine%20Antifouling%20Properties&rft.jtitle=ACS%20applied%20bio%20materials&rft.au=Yu,%20Wenfa&rft.date=2021-03-15&rft.volume=4&rft.issue=3&rft.spage=2385&rft.epage=2397&rft.pages=2385-2397&rft.issn=2576-6422&rft.eissn=2576-6422&rft_id=info:doi/10.1021/acsabm.0c01253&rft_dat=%3Cproquest_cross%3E2618906016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618906016&rft_id=info:pmid/35014359&rfr_iscdi=true