DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore

Cost-effective, fast, and reliable DNA sequencing can be enabled by advances in nanopore-based methods, such as the use of atomically thin graphene membranes. However, strong interaction of DNA bases with graphene leads to undesirable effects such as sticking of DNA strands to the membrane surface....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied bio materials 2021-01, Vol.4 (1), p.451-461
Hauptverfasser: Balasubramanian, Ramkumar, Pal, Sohini, Rao, Anjana, Naik, Akshay, Chakraborty, Banani, Maiti, Prabal K, Varma, Manoj M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 461
container_issue 1
container_start_page 451
container_title ACS applied bio materials
container_volume 4
creator Balasubramanian, Ramkumar
Pal, Sohini
Rao, Anjana
Naik, Akshay
Chakraborty, Banani
Maiti, Prabal K
Varma, Manoj M
description Cost-effective, fast, and reliable DNA sequencing can be enabled by advances in nanopore-based methods, such as the use of atomically thin graphene membranes. However, strong interaction of DNA bases with graphene leads to undesirable effects such as sticking of DNA strands to the membrane surface. While surface functionalization is one way to counter this problem, here, we present another solution based on a heterostructure nanopore system, consisting of a monolayer of graphene and hexagonal boron nitride (hBN) each. Molecular dynamics studies of DNA translocation through this heterostructure nanopore revealed a surprising and crucial influence of the heterostructure layer order in controlling the base specific signal variability. Specifically, the heterostructure with graphene on top of hBN had nearly 3–10× lower signal variability than the one with hBN on top of graphene. Simulations point to the role of differential underside sticking of DNA bases as a possible reason for the observed influence of the layer order. Our studies can guide the development of experimental systems to study and exploit DNA translocation through two-dimensional heterostructure nanopores for single molecule sequencing and sensing applications.
doi_str_mv 10.1021/acsabm.0c00929
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2618905826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618905826</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-4e7c233fd69596a244b9f25e224872c5cc042668a10da464b5bba34299ac33c23</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoghYGZFHhNTinB23Gcs3UlUGPtbo4lzalDQutiPov8eoBbEw-WQ976u7h7GTRAwSAckFGo_FciCMEBlkO-wA0qHuawWw-2fusWPvF0IIEEImo2yf9WQqEgWZPmAf19Mxf3bY-sYaDLVteZg7283m_JVcqA02zZo_BTRvVHK45hNck_PcVvzO4WpOLXFsS35PnzizLTb80rpYMq2Dq0uK_4Gc9cF1JnSO-BRbu7KOjthehY2n4-17yF5ub56v7vuTx7uHq_Gkj1KK0Fc0NCBlVeoszTSCUkVWQUoAajQEkxojFGg9wkSUqLQq0qJAGU_L0EgZo4fsbNO7cva9Ix_yZe0NNQ22ZDufg45GRDoCHdHBBjVxYe-oyleuXqJb54nIv33nG9_51ncMnG67u2JJ5S_-YzcC5xsgBvOF7Vz04_9r-wLkXYqd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618905826</pqid></control><display><type>article</type><title>DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore</title><source>MEDLINE</source><source>ACS Publications</source><creator>Balasubramanian, Ramkumar ; Pal, Sohini ; Rao, Anjana ; Naik, Akshay ; Chakraborty, Banani ; Maiti, Prabal K ; Varma, Manoj M</creator><creatorcontrib>Balasubramanian, Ramkumar ; Pal, Sohini ; Rao, Anjana ; Naik, Akshay ; Chakraborty, Banani ; Maiti, Prabal K ; Varma, Manoj M</creatorcontrib><description>Cost-effective, fast, and reliable DNA sequencing can be enabled by advances in nanopore-based methods, such as the use of atomically thin graphene membranes. However, strong interaction of DNA bases with graphene leads to undesirable effects such as sticking of DNA strands to the membrane surface. While surface functionalization is one way to counter this problem, here, we present another solution based on a heterostructure nanopore system, consisting of a monolayer of graphene and hexagonal boron nitride (hBN) each. Molecular dynamics studies of DNA translocation through this heterostructure nanopore revealed a surprising and crucial influence of the heterostructure layer order in controlling the base specific signal variability. Specifically, the heterostructure with graphene on top of hBN had nearly 3–10× lower signal variability than the one with hBN on top of graphene. Simulations point to the role of differential underside sticking of DNA bases as a possible reason for the observed influence of the layer order. Our studies can guide the development of experimental systems to study and exploit DNA translocation through two-dimensional heterostructure nanopores for single molecule sequencing and sensing applications.</description><identifier>ISSN: 2576-6422</identifier><identifier>EISSN: 2576-6422</identifier><identifier>DOI: 10.1021/acsabm.0c00929</identifier><identifier>PMID: 35014296</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Base Pairing ; Boron Compounds - chemistry ; DNA - chemistry ; DNA - metabolism ; Graphite - chemistry ; Nanopores ; Poly A - chemistry ; Poly A - metabolism ; Poly C - chemistry ; Poly C - metabolism ; Poly G - chemistry ; Poly G - metabolism ; Poly T - chemistry ; Poly T - metabolism</subject><ispartof>ACS applied bio materials, 2021-01, Vol.4 (1), p.451-461</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-4e7c233fd69596a244b9f25e224872c5cc042668a10da464b5bba34299ac33c23</citedby><cites>FETCH-LOGICAL-a330t-4e7c233fd69596a244b9f25e224872c5cc042668a10da464b5bba34299ac33c23</cites><orcidid>0000-0002-7230-130X ; 0000-0002-1870-1775 ; 0000-0001-8775-1832 ; 0000-0001-6325-7231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsabm.0c00929$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsabm.0c00929$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35014296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balasubramanian, Ramkumar</creatorcontrib><creatorcontrib>Pal, Sohini</creatorcontrib><creatorcontrib>Rao, Anjana</creatorcontrib><creatorcontrib>Naik, Akshay</creatorcontrib><creatorcontrib>Chakraborty, Banani</creatorcontrib><creatorcontrib>Maiti, Prabal K</creatorcontrib><creatorcontrib>Varma, Manoj M</creatorcontrib><title>DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore</title><title>ACS applied bio materials</title><addtitle>ACS Appl. Bio Mater</addtitle><description>Cost-effective, fast, and reliable DNA sequencing can be enabled by advances in nanopore-based methods, such as the use of atomically thin graphene membranes. However, strong interaction of DNA bases with graphene leads to undesirable effects such as sticking of DNA strands to the membrane surface. While surface functionalization is one way to counter this problem, here, we present another solution based on a heterostructure nanopore system, consisting of a monolayer of graphene and hexagonal boron nitride (hBN) each. Molecular dynamics studies of DNA translocation through this heterostructure nanopore revealed a surprising and crucial influence of the heterostructure layer order in controlling the base specific signal variability. Specifically, the heterostructure with graphene on top of hBN had nearly 3–10× lower signal variability than the one with hBN on top of graphene. Simulations point to the role of differential underside sticking of DNA bases as a possible reason for the observed influence of the layer order. Our studies can guide the development of experimental systems to study and exploit DNA translocation through two-dimensional heterostructure nanopores for single molecule sequencing and sensing applications.</description><subject>Base Pairing</subject><subject>Boron Compounds - chemistry</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>Graphite - chemistry</subject><subject>Nanopores</subject><subject>Poly A - chemistry</subject><subject>Poly A - metabolism</subject><subject>Poly C - chemistry</subject><subject>Poly C - metabolism</subject><subject>Poly G - chemistry</subject><subject>Poly G - metabolism</subject><subject>Poly T - chemistry</subject><subject>Poly T - metabolism</subject><issn>2576-6422</issn><issn>2576-6422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAQhi0EoghYGZFHhNTinB23Gcs3UlUGPtbo4lzalDQutiPov8eoBbEw-WQ976u7h7GTRAwSAckFGo_FciCMEBlkO-wA0qHuawWw-2fusWPvF0IIEEImo2yf9WQqEgWZPmAf19Mxf3bY-sYaDLVteZg7283m_JVcqA02zZo_BTRvVHK45hNck_PcVvzO4WpOLXFsS35PnzizLTb80rpYMq2Dq0uK_4Gc9cF1JnSO-BRbu7KOjthehY2n4-17yF5ub56v7vuTx7uHq_Gkj1KK0Fc0NCBlVeoszTSCUkVWQUoAajQEkxojFGg9wkSUqLQq0qJAGU_L0EgZo4fsbNO7cva9Ix_yZe0NNQ22ZDufg45GRDoCHdHBBjVxYe-oyleuXqJb54nIv33nG9_51ncMnG67u2JJ5S_-YzcC5xsgBvOF7Vz04_9r-wLkXYqd</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Balasubramanian, Ramkumar</creator><creator>Pal, Sohini</creator><creator>Rao, Anjana</creator><creator>Naik, Akshay</creator><creator>Chakraborty, Banani</creator><creator>Maiti, Prabal K</creator><creator>Varma, Manoj M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7230-130X</orcidid><orcidid>https://orcid.org/0000-0002-1870-1775</orcidid><orcidid>https://orcid.org/0000-0001-8775-1832</orcidid><orcidid>https://orcid.org/0000-0001-6325-7231</orcidid></search><sort><creationdate>20210118</creationdate><title>DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore</title><author>Balasubramanian, Ramkumar ; Pal, Sohini ; Rao, Anjana ; Naik, Akshay ; Chakraborty, Banani ; Maiti, Prabal K ; Varma, Manoj M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-4e7c233fd69596a244b9f25e224872c5cc042668a10da464b5bba34299ac33c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Base Pairing</topic><topic>Boron Compounds - chemistry</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>Graphite - chemistry</topic><topic>Nanopores</topic><topic>Poly A - chemistry</topic><topic>Poly A - metabolism</topic><topic>Poly C - chemistry</topic><topic>Poly C - metabolism</topic><topic>Poly G - chemistry</topic><topic>Poly G - metabolism</topic><topic>Poly T - chemistry</topic><topic>Poly T - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balasubramanian, Ramkumar</creatorcontrib><creatorcontrib>Pal, Sohini</creatorcontrib><creatorcontrib>Rao, Anjana</creatorcontrib><creatorcontrib>Naik, Akshay</creatorcontrib><creatorcontrib>Chakraborty, Banani</creatorcontrib><creatorcontrib>Maiti, Prabal K</creatorcontrib><creatorcontrib>Varma, Manoj M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied bio materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balasubramanian, Ramkumar</au><au>Pal, Sohini</au><au>Rao, Anjana</au><au>Naik, Akshay</au><au>Chakraborty, Banani</au><au>Maiti, Prabal K</au><au>Varma, Manoj M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore</atitle><jtitle>ACS applied bio materials</jtitle><addtitle>ACS Appl. Bio Mater</addtitle><date>2021-01-18</date><risdate>2021</risdate><volume>4</volume><issue>1</issue><spage>451</spage><epage>461</epage><pages>451-461</pages><issn>2576-6422</issn><eissn>2576-6422</eissn><abstract>Cost-effective, fast, and reliable DNA sequencing can be enabled by advances in nanopore-based methods, such as the use of atomically thin graphene membranes. However, strong interaction of DNA bases with graphene leads to undesirable effects such as sticking of DNA strands to the membrane surface. While surface functionalization is one way to counter this problem, here, we present another solution based on a heterostructure nanopore system, consisting of a monolayer of graphene and hexagonal boron nitride (hBN) each. Molecular dynamics studies of DNA translocation through this heterostructure nanopore revealed a surprising and crucial influence of the heterostructure layer order in controlling the base specific signal variability. Specifically, the heterostructure with graphene on top of hBN had nearly 3–10× lower signal variability than the one with hBN on top of graphene. Simulations point to the role of differential underside sticking of DNA bases as a possible reason for the observed influence of the layer order. Our studies can guide the development of experimental systems to study and exploit DNA translocation through two-dimensional heterostructure nanopores for single molecule sequencing and sensing applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35014296</pmid><doi>10.1021/acsabm.0c00929</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7230-130X</orcidid><orcidid>https://orcid.org/0000-0002-1870-1775</orcidid><orcidid>https://orcid.org/0000-0001-8775-1832</orcidid><orcidid>https://orcid.org/0000-0001-6325-7231</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2576-6422
ispartof ACS applied bio materials, 2021-01, Vol.4 (1), p.451-461
issn 2576-6422
2576-6422
language eng
recordid cdi_proquest_miscellaneous_2618905826
source MEDLINE; ACS Publications
subjects Base Pairing
Boron Compounds - chemistry
DNA - chemistry
DNA - metabolism
Graphite - chemistry
Nanopores
Poly A - chemistry
Poly A - metabolism
Poly C - chemistry
Poly C - metabolism
Poly G - chemistry
Poly G - metabolism
Poly T - chemistry
Poly T - metabolism
title DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20Translocation%20through%20Vertically%20Stacked%202D%20Layers%20of%20Graphene%20and%20Hexagonal%20Boron%20Nitride%20Heterostructure%20Nanopore&rft.jtitle=ACS%20applied%20bio%20materials&rft.au=Balasubramanian,%20Ramkumar&rft.date=2021-01-18&rft.volume=4&rft.issue=1&rft.spage=451&rft.epage=461&rft.pages=451-461&rft.issn=2576-6422&rft.eissn=2576-6422&rft_id=info:doi/10.1021/acsabm.0c00929&rft_dat=%3Cproquest_cross%3E2618905826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618905826&rft_id=info:pmid/35014296&rfr_iscdi=true