DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore
Cost-effective, fast, and reliable DNA sequencing can be enabled by advances in nanopore-based methods, such as the use of atomically thin graphene membranes. However, strong interaction of DNA bases with graphene leads to undesirable effects such as sticking of DNA strands to the membrane surface....
Gespeichert in:
Veröffentlicht in: | ACS applied bio materials 2021-01, Vol.4 (1), p.451-461 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 461 |
---|---|
container_issue | 1 |
container_start_page | 451 |
container_title | ACS applied bio materials |
container_volume | 4 |
creator | Balasubramanian, Ramkumar Pal, Sohini Rao, Anjana Naik, Akshay Chakraborty, Banani Maiti, Prabal K Varma, Manoj M |
description | Cost-effective, fast, and reliable DNA sequencing can be enabled by advances in nanopore-based methods, such as the use of atomically thin graphene membranes. However, strong interaction of DNA bases with graphene leads to undesirable effects such as sticking of DNA strands to the membrane surface. While surface functionalization is one way to counter this problem, here, we present another solution based on a heterostructure nanopore system, consisting of a monolayer of graphene and hexagonal boron nitride (hBN) each. Molecular dynamics studies of DNA translocation through this heterostructure nanopore revealed a surprising and crucial influence of the heterostructure layer order in controlling the base specific signal variability. Specifically, the heterostructure with graphene on top of hBN had nearly 3–10× lower signal variability than the one with hBN on top of graphene. Simulations point to the role of differential underside sticking of DNA bases as a possible reason for the observed influence of the layer order. Our studies can guide the development of experimental systems to study and exploit DNA translocation through two-dimensional heterostructure nanopores for single molecule sequencing and sensing applications. |
doi_str_mv | 10.1021/acsabm.0c00929 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2618905826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618905826</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-4e7c233fd69596a244b9f25e224872c5cc042668a10da464b5bba34299ac33c23</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoghYGZFHhNTinB23Gcs3UlUGPtbo4lzalDQutiPov8eoBbEw-WQ976u7h7GTRAwSAckFGo_FciCMEBlkO-wA0qHuawWw-2fusWPvF0IIEEImo2yf9WQqEgWZPmAf19Mxf3bY-sYaDLVteZg7283m_JVcqA02zZo_BTRvVHK45hNck_PcVvzO4WpOLXFsS35PnzizLTb80rpYMq2Dq0uK_4Gc9cF1JnSO-BRbu7KOjthehY2n4-17yF5ub56v7vuTx7uHq_Gkj1KK0Fc0NCBlVeoszTSCUkVWQUoAajQEkxojFGg9wkSUqLQq0qJAGU_L0EgZo4fsbNO7cva9Ix_yZe0NNQ22ZDufg45GRDoCHdHBBjVxYe-oyleuXqJb54nIv33nG9_51ncMnG67u2JJ5S_-YzcC5xsgBvOF7Vz04_9r-wLkXYqd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618905826</pqid></control><display><type>article</type><title>DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore</title><source>MEDLINE</source><source>ACS Publications</source><creator>Balasubramanian, Ramkumar ; Pal, Sohini ; Rao, Anjana ; Naik, Akshay ; Chakraborty, Banani ; Maiti, Prabal K ; Varma, Manoj M</creator><creatorcontrib>Balasubramanian, Ramkumar ; Pal, Sohini ; Rao, Anjana ; Naik, Akshay ; Chakraborty, Banani ; Maiti, Prabal K ; Varma, Manoj M</creatorcontrib><description>Cost-effective, fast, and reliable DNA sequencing can be enabled by advances in nanopore-based methods, such as the use of atomically thin graphene membranes. However, strong interaction of DNA bases with graphene leads to undesirable effects such as sticking of DNA strands to the membrane surface. While surface functionalization is one way to counter this problem, here, we present another solution based on a heterostructure nanopore system, consisting of a monolayer of graphene and hexagonal boron nitride (hBN) each. Molecular dynamics studies of DNA translocation through this heterostructure nanopore revealed a surprising and crucial influence of the heterostructure layer order in controlling the base specific signal variability. Specifically, the heterostructure with graphene on top of hBN had nearly 3–10× lower signal variability than the one with hBN on top of graphene. Simulations point to the role of differential underside sticking of DNA bases as a possible reason for the observed influence of the layer order. Our studies can guide the development of experimental systems to study and exploit DNA translocation through two-dimensional heterostructure nanopores for single molecule sequencing and sensing applications.</description><identifier>ISSN: 2576-6422</identifier><identifier>EISSN: 2576-6422</identifier><identifier>DOI: 10.1021/acsabm.0c00929</identifier><identifier>PMID: 35014296</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Base Pairing ; Boron Compounds - chemistry ; DNA - chemistry ; DNA - metabolism ; Graphite - chemistry ; Nanopores ; Poly A - chemistry ; Poly A - metabolism ; Poly C - chemistry ; Poly C - metabolism ; Poly G - chemistry ; Poly G - metabolism ; Poly T - chemistry ; Poly T - metabolism</subject><ispartof>ACS applied bio materials, 2021-01, Vol.4 (1), p.451-461</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-4e7c233fd69596a244b9f25e224872c5cc042668a10da464b5bba34299ac33c23</citedby><cites>FETCH-LOGICAL-a330t-4e7c233fd69596a244b9f25e224872c5cc042668a10da464b5bba34299ac33c23</cites><orcidid>0000-0002-7230-130X ; 0000-0002-1870-1775 ; 0000-0001-8775-1832 ; 0000-0001-6325-7231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsabm.0c00929$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsabm.0c00929$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35014296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balasubramanian, Ramkumar</creatorcontrib><creatorcontrib>Pal, Sohini</creatorcontrib><creatorcontrib>Rao, Anjana</creatorcontrib><creatorcontrib>Naik, Akshay</creatorcontrib><creatorcontrib>Chakraborty, Banani</creatorcontrib><creatorcontrib>Maiti, Prabal K</creatorcontrib><creatorcontrib>Varma, Manoj M</creatorcontrib><title>DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore</title><title>ACS applied bio materials</title><addtitle>ACS Appl. Bio Mater</addtitle><description>Cost-effective, fast, and reliable DNA sequencing can be enabled by advances in nanopore-based methods, such as the use of atomically thin graphene membranes. However, strong interaction of DNA bases with graphene leads to undesirable effects such as sticking of DNA strands to the membrane surface. While surface functionalization is one way to counter this problem, here, we present another solution based on a heterostructure nanopore system, consisting of a monolayer of graphene and hexagonal boron nitride (hBN) each. Molecular dynamics studies of DNA translocation through this heterostructure nanopore revealed a surprising and crucial influence of the heterostructure layer order in controlling the base specific signal variability. Specifically, the heterostructure with graphene on top of hBN had nearly 3–10× lower signal variability than the one with hBN on top of graphene. Simulations point to the role of differential underside sticking of DNA bases as a possible reason for the observed influence of the layer order. Our studies can guide the development of experimental systems to study and exploit DNA translocation through two-dimensional heterostructure nanopores for single molecule sequencing and sensing applications.</description><subject>Base Pairing</subject><subject>Boron Compounds - chemistry</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>Graphite - chemistry</subject><subject>Nanopores</subject><subject>Poly A - chemistry</subject><subject>Poly A - metabolism</subject><subject>Poly C - chemistry</subject><subject>Poly C - metabolism</subject><subject>Poly G - chemistry</subject><subject>Poly G - metabolism</subject><subject>Poly T - chemistry</subject><subject>Poly T - metabolism</subject><issn>2576-6422</issn><issn>2576-6422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAQhi0EoghYGZFHhNTinB23Gcs3UlUGPtbo4lzalDQutiPov8eoBbEw-WQ976u7h7GTRAwSAckFGo_FciCMEBlkO-wA0qHuawWw-2fusWPvF0IIEEImo2yf9WQqEgWZPmAf19Mxf3bY-sYaDLVteZg7283m_JVcqA02zZo_BTRvVHK45hNck_PcVvzO4WpOLXFsS35PnzizLTb80rpYMq2Dq0uK_4Gc9cF1JnSO-BRbu7KOjthehY2n4-17yF5ub56v7vuTx7uHq_Gkj1KK0Fc0NCBlVeoszTSCUkVWQUoAajQEkxojFGg9wkSUqLQq0qJAGU_L0EgZo4fsbNO7cva9Ix_yZe0NNQ22ZDufg45GRDoCHdHBBjVxYe-oyleuXqJb54nIv33nG9_51ncMnG67u2JJ5S_-YzcC5xsgBvOF7Vz04_9r-wLkXYqd</recordid><startdate>20210118</startdate><enddate>20210118</enddate><creator>Balasubramanian, Ramkumar</creator><creator>Pal, Sohini</creator><creator>Rao, Anjana</creator><creator>Naik, Akshay</creator><creator>Chakraborty, Banani</creator><creator>Maiti, Prabal K</creator><creator>Varma, Manoj M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7230-130X</orcidid><orcidid>https://orcid.org/0000-0002-1870-1775</orcidid><orcidid>https://orcid.org/0000-0001-8775-1832</orcidid><orcidid>https://orcid.org/0000-0001-6325-7231</orcidid></search><sort><creationdate>20210118</creationdate><title>DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore</title><author>Balasubramanian, Ramkumar ; Pal, Sohini ; Rao, Anjana ; Naik, Akshay ; Chakraborty, Banani ; Maiti, Prabal K ; Varma, Manoj M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-4e7c233fd69596a244b9f25e224872c5cc042668a10da464b5bba34299ac33c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Base Pairing</topic><topic>Boron Compounds - chemistry</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>Graphite - chemistry</topic><topic>Nanopores</topic><topic>Poly A - chemistry</topic><topic>Poly A - metabolism</topic><topic>Poly C - chemistry</topic><topic>Poly C - metabolism</topic><topic>Poly G - chemistry</topic><topic>Poly G - metabolism</topic><topic>Poly T - chemistry</topic><topic>Poly T - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balasubramanian, Ramkumar</creatorcontrib><creatorcontrib>Pal, Sohini</creatorcontrib><creatorcontrib>Rao, Anjana</creatorcontrib><creatorcontrib>Naik, Akshay</creatorcontrib><creatorcontrib>Chakraborty, Banani</creatorcontrib><creatorcontrib>Maiti, Prabal K</creatorcontrib><creatorcontrib>Varma, Manoj M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied bio materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balasubramanian, Ramkumar</au><au>Pal, Sohini</au><au>Rao, Anjana</au><au>Naik, Akshay</au><au>Chakraborty, Banani</au><au>Maiti, Prabal K</au><au>Varma, Manoj M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore</atitle><jtitle>ACS applied bio materials</jtitle><addtitle>ACS Appl. Bio Mater</addtitle><date>2021-01-18</date><risdate>2021</risdate><volume>4</volume><issue>1</issue><spage>451</spage><epage>461</epage><pages>451-461</pages><issn>2576-6422</issn><eissn>2576-6422</eissn><abstract>Cost-effective, fast, and reliable DNA sequencing can be enabled by advances in nanopore-based methods, such as the use of atomically thin graphene membranes. However, strong interaction of DNA bases with graphene leads to undesirable effects such as sticking of DNA strands to the membrane surface. While surface functionalization is one way to counter this problem, here, we present another solution based on a heterostructure nanopore system, consisting of a monolayer of graphene and hexagonal boron nitride (hBN) each. Molecular dynamics studies of DNA translocation through this heterostructure nanopore revealed a surprising and crucial influence of the heterostructure layer order in controlling the base specific signal variability. Specifically, the heterostructure with graphene on top of hBN had nearly 3–10× lower signal variability than the one with hBN on top of graphene. Simulations point to the role of differential underside sticking of DNA bases as a possible reason for the observed influence of the layer order. Our studies can guide the development of experimental systems to study and exploit DNA translocation through two-dimensional heterostructure nanopores for single molecule sequencing and sensing applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35014296</pmid><doi>10.1021/acsabm.0c00929</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7230-130X</orcidid><orcidid>https://orcid.org/0000-0002-1870-1775</orcidid><orcidid>https://orcid.org/0000-0001-8775-1832</orcidid><orcidid>https://orcid.org/0000-0001-6325-7231</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2576-6422 |
ispartof | ACS applied bio materials, 2021-01, Vol.4 (1), p.451-461 |
issn | 2576-6422 2576-6422 |
language | eng |
recordid | cdi_proquest_miscellaneous_2618905826 |
source | MEDLINE; ACS Publications |
subjects | Base Pairing Boron Compounds - chemistry DNA - chemistry DNA - metabolism Graphite - chemistry Nanopores Poly A - chemistry Poly A - metabolism Poly C - chemistry Poly C - metabolism Poly G - chemistry Poly G - metabolism Poly T - chemistry Poly T - metabolism |
title | DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20Translocation%20through%20Vertically%20Stacked%202D%20Layers%20of%20Graphene%20and%20Hexagonal%20Boron%20Nitride%20Heterostructure%20Nanopore&rft.jtitle=ACS%20applied%20bio%20materials&rft.au=Balasubramanian,%20Ramkumar&rft.date=2021-01-18&rft.volume=4&rft.issue=1&rft.spage=451&rft.epage=461&rft.pages=451-461&rft.issn=2576-6422&rft.eissn=2576-6422&rft_id=info:doi/10.1021/acsabm.0c00929&rft_dat=%3Cproquest_cross%3E2618905826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618905826&rft_id=info:pmid/35014296&rfr_iscdi=true |