Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator
The design and development of scalable, efficient photothermal evaporator systems that reduce microplastic pollution are highly desirable. Herein, a sustainable bacterial nanocellulose (BNC)-based self-floating bilayer photothermal foam (PTFb) is designed that eases the effective confinement of sola...
Gespeichert in:
Veröffentlicht in: | ACS applied bio materials 2021-05, Vol.4 (5), p.4373-4383 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4383 |
---|---|
container_issue | 5 |
container_start_page | 4373 |
container_title | ACS applied bio materials |
container_volume | 4 |
creator | Nabeela, Kallayi Thorat, Meghana Namdeo Backer, Sumina Namboorimadathil Ramachandran, Animesh M Thomas, Reny Thankam Preethikumar, Gopika Mohamed, A. Peer Asok, Adersh Dastager, Syed Gulam Pillai, Saju |
description | The design and development of scalable, efficient photothermal evaporator systems that reduce microplastic pollution are highly desirable. Herein, a sustainable bacterial nanocellulose (BNC)-based self-floating bilayer photothermal foam (PTFb) is designed that eases the effective confinement of solar light for efficient freshwater production via interfacial heating. The sandwich nanoarchitectured porous bilayer solar evaporator consists of a top solar-harvesting blackbody layer composed of broad-spectrum active black titania (BT) nanoparticles embedded in the BNC matrix and a thick bottom layer of pristine BNC for agile thermal management, the efficient wicking of bulk water, and staying afloat. A decisive advantage of the BNC network is that it enables the fabrication of a lightweight photothermal foam with reduced thermal conductivity and high wet strength. Additionally, the hydrophilic three-dimensional (3D) interconnected porous network of BNC contributes to the fast evaporation of water under ambient solar conditions with reduced vaporization enthalpy by virtue of intermediated water generated via a BNC–water interaction. The fabricated PTFb is found to yield a water evaporation efficiency of 84.3% (under 1054 W m–2) with 4 wt % BT loading. Furthermore, scalable PTFb realized a water production rate of 1.26 L m–2 h–1 under real-time conditions. The developed eco-friendly BNC-supported BT foams could be used in applications such as solar desalination, contaminated water purification, extraction of water from moisture, etc., and thus could address one of the major present-day global concerns of drinking water scarcity. |
doi_str_mv | 10.1021/acsabm.1c00143 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2618903574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618903574</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-c90b5ae204e4e41155847b8f231771188f65c2b01cdf33df752b66184642ce9b3</originalsourceid><addsrcrecordid>eNp1kU9rGzEQxUVpiEPia45Fx1KwM5L277FJnMQQkkDT8zKrlbCcXcmVtAn5Ev3MlVmn9FIk0CB-84Z5j5BzBksGnF2gDNgOSyYBWCY-kROel8WiyDj__E89I_MQtgDAAQSr6mMyEzlAUWX1Cfl99955t9uY3kgqrunaRuWls1bJqDr6oOKb8y_UaXqJ6ccb7OkDWidV34-9C-riskf5Qp9NRGuQPm1cdHGj_JDAG4dDoJiupSutjTTKxmmERrmX-uF69HT1ijvnMTp_Ro409kHND-8p-Xmzer66W9w_3q6vvt8vUAiIC1lDm6PikKl0GMvzKivbSnPBypKxqtJFLnkLTHZaiE6XOW-LglVZ8kOquhWn5Ouku_Pu16hCbAYT9juhVW4MDU9wDSIvs4QuJ1R6F4JXutl5M6B_bxg0-xiaKYbmEENq-HLQHttBdX_xD9MT8G0CUmOzdaO3adX_qf0BCPuTJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618903574</pqid></control><display><type>article</type><title>Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator</title><source>ACS Publications</source><source>MEDLINE</source><creator>Nabeela, Kallayi ; Thorat, Meghana Namdeo ; Backer, Sumina Namboorimadathil ; Ramachandran, Animesh M ; Thomas, Reny Thankam ; Preethikumar, Gopika ; Mohamed, A. Peer ; Asok, Adersh ; Dastager, Syed Gulam ; Pillai, Saju</creator><creatorcontrib>Nabeela, Kallayi ; Thorat, Meghana Namdeo ; Backer, Sumina Namboorimadathil ; Ramachandran, Animesh M ; Thomas, Reny Thankam ; Preethikumar, Gopika ; Mohamed, A. Peer ; Asok, Adersh ; Dastager, Syed Gulam ; Pillai, Saju</creatorcontrib><description>The design and development of scalable, efficient photothermal evaporator systems that reduce microplastic pollution are highly desirable. Herein, a sustainable bacterial nanocellulose (BNC)-based self-floating bilayer photothermal foam (PTFb) is designed that eases the effective confinement of solar light for efficient freshwater production via interfacial heating. The sandwich nanoarchitectured porous bilayer solar evaporator consists of a top solar-harvesting blackbody layer composed of broad-spectrum active black titania (BT) nanoparticles embedded in the BNC matrix and a thick bottom layer of pristine BNC for agile thermal management, the efficient wicking of bulk water, and staying afloat. A decisive advantage of the BNC network is that it enables the fabrication of a lightweight photothermal foam with reduced thermal conductivity and high wet strength. Additionally, the hydrophilic three-dimensional (3D) interconnected porous network of BNC contributes to the fast evaporation of water under ambient solar conditions with reduced vaporization enthalpy by virtue of intermediated water generated via a BNC–water interaction. The fabricated PTFb is found to yield a water evaporation efficiency of 84.3% (under 1054 W m–2) with 4 wt % BT loading. Furthermore, scalable PTFb realized a water production rate of 1.26 L m–2 h–1 under real-time conditions. The developed eco-friendly BNC-supported BT foams could be used in applications such as solar desalination, contaminated water purification, extraction of water from moisture, etc., and thus could address one of the major present-day global concerns of drinking water scarcity.</description><identifier>ISSN: 2576-6422</identifier><identifier>EISSN: 2576-6422</identifier><identifier>DOI: 10.1021/acsabm.1c00143</identifier><identifier>PMID: 35006849</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetobacteraceae - chemistry ; Biocompatible Materials - chemistry ; Cellulose - chemistry ; Hydrophobic and Hydrophilic Interactions ; Materials Testing ; Nanoparticles - chemistry ; Particle Size ; Sunlight ; Titanium - chemistry ; Water Purification</subject><ispartof>ACS applied bio materials, 2021-05, Vol.4 (5), p.4373-4383</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-c90b5ae204e4e41155847b8f231771188f65c2b01cdf33df752b66184642ce9b3</citedby><cites>FETCH-LOGICAL-a330t-c90b5ae204e4e41155847b8f231771188f65c2b01cdf33df752b66184642ce9b3</cites><orcidid>0000-0002-8316-1242 ; 0000-0001-8718-9974 ; 0000-0001-9855-6899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsabm.1c00143$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsabm.1c00143$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35006849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nabeela, Kallayi</creatorcontrib><creatorcontrib>Thorat, Meghana Namdeo</creatorcontrib><creatorcontrib>Backer, Sumina Namboorimadathil</creatorcontrib><creatorcontrib>Ramachandran, Animesh M</creatorcontrib><creatorcontrib>Thomas, Reny Thankam</creatorcontrib><creatorcontrib>Preethikumar, Gopika</creatorcontrib><creatorcontrib>Mohamed, A. Peer</creatorcontrib><creatorcontrib>Asok, Adersh</creatorcontrib><creatorcontrib>Dastager, Syed Gulam</creatorcontrib><creatorcontrib>Pillai, Saju</creatorcontrib><title>Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator</title><title>ACS applied bio materials</title><addtitle>ACS Appl. Bio Mater</addtitle><description>The design and development of scalable, efficient photothermal evaporator systems that reduce microplastic pollution are highly desirable. Herein, a sustainable bacterial nanocellulose (BNC)-based self-floating bilayer photothermal foam (PTFb) is designed that eases the effective confinement of solar light for efficient freshwater production via interfacial heating. The sandwich nanoarchitectured porous bilayer solar evaporator consists of a top solar-harvesting blackbody layer composed of broad-spectrum active black titania (BT) nanoparticles embedded in the BNC matrix and a thick bottom layer of pristine BNC for agile thermal management, the efficient wicking of bulk water, and staying afloat. A decisive advantage of the BNC network is that it enables the fabrication of a lightweight photothermal foam with reduced thermal conductivity and high wet strength. Additionally, the hydrophilic three-dimensional (3D) interconnected porous network of BNC contributes to the fast evaporation of water under ambient solar conditions with reduced vaporization enthalpy by virtue of intermediated water generated via a BNC–water interaction. The fabricated PTFb is found to yield a water evaporation efficiency of 84.3% (under 1054 W m–2) with 4 wt % BT loading. Furthermore, scalable PTFb realized a water production rate of 1.26 L m–2 h–1 under real-time conditions. The developed eco-friendly BNC-supported BT foams could be used in applications such as solar desalination, contaminated water purification, extraction of water from moisture, etc., and thus could address one of the major present-day global concerns of drinking water scarcity.</description><subject>Acetobacteraceae - chemistry</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cellulose - chemistry</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Materials Testing</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Sunlight</subject><subject>Titanium - chemistry</subject><subject>Water Purification</subject><issn>2576-6422</issn><issn>2576-6422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9rGzEQxUVpiEPia45Fx1KwM5L277FJnMQQkkDT8zKrlbCcXcmVtAn5Ev3MlVmn9FIk0CB-84Z5j5BzBksGnF2gDNgOSyYBWCY-kROel8WiyDj__E89I_MQtgDAAQSr6mMyEzlAUWX1Cfl99955t9uY3kgqrunaRuWls1bJqDr6oOKb8y_UaXqJ6ccb7OkDWidV34-9C-riskf5Qp9NRGuQPm1cdHGj_JDAG4dDoJiupSutjTTKxmmERrmX-uF69HT1ijvnMTp_Ro409kHND-8p-Xmzer66W9w_3q6vvt8vUAiIC1lDm6PikKl0GMvzKivbSnPBypKxqtJFLnkLTHZaiE6XOW-LglVZ8kOquhWn5Ouku_Pu16hCbAYT9juhVW4MDU9wDSIvs4QuJ1R6F4JXutl5M6B_bxg0-xiaKYbmEENq-HLQHttBdX_xD9MT8G0CUmOzdaO3adX_qf0BCPuTJg</recordid><startdate>20210517</startdate><enddate>20210517</enddate><creator>Nabeela, Kallayi</creator><creator>Thorat, Meghana Namdeo</creator><creator>Backer, Sumina Namboorimadathil</creator><creator>Ramachandran, Animesh M</creator><creator>Thomas, Reny Thankam</creator><creator>Preethikumar, Gopika</creator><creator>Mohamed, A. Peer</creator><creator>Asok, Adersh</creator><creator>Dastager, Syed Gulam</creator><creator>Pillai, Saju</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8316-1242</orcidid><orcidid>https://orcid.org/0000-0001-8718-9974</orcidid><orcidid>https://orcid.org/0000-0001-9855-6899</orcidid></search><sort><creationdate>20210517</creationdate><title>Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator</title><author>Nabeela, Kallayi ; Thorat, Meghana Namdeo ; Backer, Sumina Namboorimadathil ; Ramachandran, Animesh M ; Thomas, Reny Thankam ; Preethikumar, Gopika ; Mohamed, A. Peer ; Asok, Adersh ; Dastager, Syed Gulam ; Pillai, Saju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-c90b5ae204e4e41155847b8f231771188f65c2b01cdf33df752b66184642ce9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetobacteraceae - chemistry</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cellulose - chemistry</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Materials Testing</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Sunlight</topic><topic>Titanium - chemistry</topic><topic>Water Purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nabeela, Kallayi</creatorcontrib><creatorcontrib>Thorat, Meghana Namdeo</creatorcontrib><creatorcontrib>Backer, Sumina Namboorimadathil</creatorcontrib><creatorcontrib>Ramachandran, Animesh M</creatorcontrib><creatorcontrib>Thomas, Reny Thankam</creatorcontrib><creatorcontrib>Preethikumar, Gopika</creatorcontrib><creatorcontrib>Mohamed, A. Peer</creatorcontrib><creatorcontrib>Asok, Adersh</creatorcontrib><creatorcontrib>Dastager, Syed Gulam</creatorcontrib><creatorcontrib>Pillai, Saju</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied bio materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nabeela, Kallayi</au><au>Thorat, Meghana Namdeo</au><au>Backer, Sumina Namboorimadathil</au><au>Ramachandran, Animesh M</au><au>Thomas, Reny Thankam</au><au>Preethikumar, Gopika</au><au>Mohamed, A. Peer</au><au>Asok, Adersh</au><au>Dastager, Syed Gulam</au><au>Pillai, Saju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator</atitle><jtitle>ACS applied bio materials</jtitle><addtitle>ACS Appl. Bio Mater</addtitle><date>2021-05-17</date><risdate>2021</risdate><volume>4</volume><issue>5</issue><spage>4373</spage><epage>4383</epage><pages>4373-4383</pages><issn>2576-6422</issn><eissn>2576-6422</eissn><abstract>The design and development of scalable, efficient photothermal evaporator systems that reduce microplastic pollution are highly desirable. Herein, a sustainable bacterial nanocellulose (BNC)-based self-floating bilayer photothermal foam (PTFb) is designed that eases the effective confinement of solar light for efficient freshwater production via interfacial heating. The sandwich nanoarchitectured porous bilayer solar evaporator consists of a top solar-harvesting blackbody layer composed of broad-spectrum active black titania (BT) nanoparticles embedded in the BNC matrix and a thick bottom layer of pristine BNC for agile thermal management, the efficient wicking of bulk water, and staying afloat. A decisive advantage of the BNC network is that it enables the fabrication of a lightweight photothermal foam with reduced thermal conductivity and high wet strength. Additionally, the hydrophilic three-dimensional (3D) interconnected porous network of BNC contributes to the fast evaporation of water under ambient solar conditions with reduced vaporization enthalpy by virtue of intermediated water generated via a BNC–water interaction. The fabricated PTFb is found to yield a water evaporation efficiency of 84.3% (under 1054 W m–2) with 4 wt % BT loading. Furthermore, scalable PTFb realized a water production rate of 1.26 L m–2 h–1 under real-time conditions. The developed eco-friendly BNC-supported BT foams could be used in applications such as solar desalination, contaminated water purification, extraction of water from moisture, etc., and thus could address one of the major present-day global concerns of drinking water scarcity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35006849</pmid><doi>10.1021/acsabm.1c00143</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8316-1242</orcidid><orcidid>https://orcid.org/0000-0001-8718-9974</orcidid><orcidid>https://orcid.org/0000-0001-9855-6899</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2576-6422 |
ispartof | ACS applied bio materials, 2021-05, Vol.4 (5), p.4373-4383 |
issn | 2576-6422 2576-6422 |
language | eng |
recordid | cdi_proquest_miscellaneous_2618903574 |
source | ACS Publications; MEDLINE |
subjects | Acetobacteraceae - chemistry Biocompatible Materials - chemistry Cellulose - chemistry Hydrophobic and Hydrophilic Interactions Materials Testing Nanoparticles - chemistry Particle Size Sunlight Titanium - chemistry Water Purification |
title | Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrophilic%203D%20Interconnected%20Network%20of%20Bacterial%20Nanocellulose/Black%20Titania%20Photothermal%20Foams%20as%20an%20Efficient%20Interfacial%20Solar%20Evaporator&rft.jtitle=ACS%20applied%20bio%20materials&rft.au=Nabeela,%20Kallayi&rft.date=2021-05-17&rft.volume=4&rft.issue=5&rft.spage=4373&rft.epage=4383&rft.pages=4373-4383&rft.issn=2576-6422&rft.eissn=2576-6422&rft_id=info:doi/10.1021/acsabm.1c00143&rft_dat=%3Cproquest_cross%3E2618903574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618903574&rft_id=info:pmid/35006849&rfr_iscdi=true |