Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator

The design and development of scalable, efficient photothermal evaporator systems that reduce microplastic pollution are highly desirable. Herein, a sustainable bacterial nanocellulose (BNC)-based self-floating bilayer photothermal foam (PTFb) is designed that eases the effective confinement of sola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied bio materials 2021-05, Vol.4 (5), p.4373-4383
Hauptverfasser: Nabeela, Kallayi, Thorat, Meghana Namdeo, Backer, Sumina Namboorimadathil, Ramachandran, Animesh M, Thomas, Reny Thankam, Preethikumar, Gopika, Mohamed, A. Peer, Asok, Adersh, Dastager, Syed Gulam, Pillai, Saju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4383
container_issue 5
container_start_page 4373
container_title ACS applied bio materials
container_volume 4
creator Nabeela, Kallayi
Thorat, Meghana Namdeo
Backer, Sumina Namboorimadathil
Ramachandran, Animesh M
Thomas, Reny Thankam
Preethikumar, Gopika
Mohamed, A. Peer
Asok, Adersh
Dastager, Syed Gulam
Pillai, Saju
description The design and development of scalable, efficient photothermal evaporator systems that reduce microplastic pollution are highly desirable. Herein, a sustainable bacterial nanocellulose (BNC)-based self-floating bilayer photothermal foam (PTFb) is designed that eases the effective confinement of solar light for efficient freshwater production via interfacial heating. The sandwich nanoarchitectured porous bilayer solar evaporator consists of a top solar-harvesting blackbody layer composed of broad-spectrum active black titania (BT) nanoparticles embedded in the BNC matrix and a thick bottom layer of pristine BNC for agile thermal management, the efficient wicking of bulk water, and staying afloat. A decisive advantage of the BNC network is that it enables the fabrication of a lightweight photothermal foam with reduced thermal conductivity and high wet strength. Additionally, the hydrophilic three-dimensional (3D) interconnected porous network of BNC contributes to the fast evaporation of water under ambient solar conditions with reduced vaporization enthalpy by virtue of intermediated water generated via a BNC–water interaction. The fabricated PTFb is found to yield a water evaporation efficiency of 84.3% (under 1054 W m–2) with 4 wt % BT loading. Furthermore, scalable PTFb realized a water production rate of 1.26 L m–2 h–1 under real-time conditions. The developed eco-friendly BNC-supported BT foams could be used in applications such as solar desalination, contaminated water purification, extraction of water from moisture, etc., and thus could address one of the major present-day global concerns of drinking water scarcity.
doi_str_mv 10.1021/acsabm.1c00143
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2618903574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618903574</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-c90b5ae204e4e41155847b8f231771188f65c2b01cdf33df752b66184642ce9b3</originalsourceid><addsrcrecordid>eNp1kU9rGzEQxUVpiEPia45Fx1KwM5L277FJnMQQkkDT8zKrlbCcXcmVtAn5Ev3MlVmn9FIk0CB-84Z5j5BzBksGnF2gDNgOSyYBWCY-kROel8WiyDj__E89I_MQtgDAAQSr6mMyEzlAUWX1Cfl99955t9uY3kgqrunaRuWls1bJqDr6oOKb8y_UaXqJ6ccb7OkDWidV34-9C-riskf5Qp9NRGuQPm1cdHGj_JDAG4dDoJiupSutjTTKxmmERrmX-uF69HT1ijvnMTp_Ro409kHND-8p-Xmzer66W9w_3q6vvt8vUAiIC1lDm6PikKl0GMvzKivbSnPBypKxqtJFLnkLTHZaiE6XOW-LglVZ8kOquhWn5Ouku_Pu16hCbAYT9juhVW4MDU9wDSIvs4QuJ1R6F4JXutl5M6B_bxg0-xiaKYbmEENq-HLQHttBdX_xD9MT8G0CUmOzdaO3adX_qf0BCPuTJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618903574</pqid></control><display><type>article</type><title>Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator</title><source>ACS Publications</source><source>MEDLINE</source><creator>Nabeela, Kallayi ; Thorat, Meghana Namdeo ; Backer, Sumina Namboorimadathil ; Ramachandran, Animesh M ; Thomas, Reny Thankam ; Preethikumar, Gopika ; Mohamed, A. Peer ; Asok, Adersh ; Dastager, Syed Gulam ; Pillai, Saju</creator><creatorcontrib>Nabeela, Kallayi ; Thorat, Meghana Namdeo ; Backer, Sumina Namboorimadathil ; Ramachandran, Animesh M ; Thomas, Reny Thankam ; Preethikumar, Gopika ; Mohamed, A. Peer ; Asok, Adersh ; Dastager, Syed Gulam ; Pillai, Saju</creatorcontrib><description>The design and development of scalable, efficient photothermal evaporator systems that reduce microplastic pollution are highly desirable. Herein, a sustainable bacterial nanocellulose (BNC)-based self-floating bilayer photothermal foam (PTFb) is designed that eases the effective confinement of solar light for efficient freshwater production via interfacial heating. The sandwich nanoarchitectured porous bilayer solar evaporator consists of a top solar-harvesting blackbody layer composed of broad-spectrum active black titania (BT) nanoparticles embedded in the BNC matrix and a thick bottom layer of pristine BNC for agile thermal management, the efficient wicking of bulk water, and staying afloat. A decisive advantage of the BNC network is that it enables the fabrication of a lightweight photothermal foam with reduced thermal conductivity and high wet strength. Additionally, the hydrophilic three-dimensional (3D) interconnected porous network of BNC contributes to the fast evaporation of water under ambient solar conditions with reduced vaporization enthalpy by virtue of intermediated water generated via a BNC–water interaction. The fabricated PTFb is found to yield a water evaporation efficiency of 84.3% (under 1054 W m–2) with 4 wt % BT loading. Furthermore, scalable PTFb realized a water production rate of 1.26 L m–2 h–1 under real-time conditions. The developed eco-friendly BNC-supported BT foams could be used in applications such as solar desalination, contaminated water purification, extraction of water from moisture, etc., and thus could address one of the major present-day global concerns of drinking water scarcity.</description><identifier>ISSN: 2576-6422</identifier><identifier>EISSN: 2576-6422</identifier><identifier>DOI: 10.1021/acsabm.1c00143</identifier><identifier>PMID: 35006849</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetobacteraceae - chemistry ; Biocompatible Materials - chemistry ; Cellulose - chemistry ; Hydrophobic and Hydrophilic Interactions ; Materials Testing ; Nanoparticles - chemistry ; Particle Size ; Sunlight ; Titanium - chemistry ; Water Purification</subject><ispartof>ACS applied bio materials, 2021-05, Vol.4 (5), p.4373-4383</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-c90b5ae204e4e41155847b8f231771188f65c2b01cdf33df752b66184642ce9b3</citedby><cites>FETCH-LOGICAL-a330t-c90b5ae204e4e41155847b8f231771188f65c2b01cdf33df752b66184642ce9b3</cites><orcidid>0000-0002-8316-1242 ; 0000-0001-8718-9974 ; 0000-0001-9855-6899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsabm.1c00143$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsabm.1c00143$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35006849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nabeela, Kallayi</creatorcontrib><creatorcontrib>Thorat, Meghana Namdeo</creatorcontrib><creatorcontrib>Backer, Sumina Namboorimadathil</creatorcontrib><creatorcontrib>Ramachandran, Animesh M</creatorcontrib><creatorcontrib>Thomas, Reny Thankam</creatorcontrib><creatorcontrib>Preethikumar, Gopika</creatorcontrib><creatorcontrib>Mohamed, A. Peer</creatorcontrib><creatorcontrib>Asok, Adersh</creatorcontrib><creatorcontrib>Dastager, Syed Gulam</creatorcontrib><creatorcontrib>Pillai, Saju</creatorcontrib><title>Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator</title><title>ACS applied bio materials</title><addtitle>ACS Appl. Bio Mater</addtitle><description>The design and development of scalable, efficient photothermal evaporator systems that reduce microplastic pollution are highly desirable. Herein, a sustainable bacterial nanocellulose (BNC)-based self-floating bilayer photothermal foam (PTFb) is designed that eases the effective confinement of solar light for efficient freshwater production via interfacial heating. The sandwich nanoarchitectured porous bilayer solar evaporator consists of a top solar-harvesting blackbody layer composed of broad-spectrum active black titania (BT) nanoparticles embedded in the BNC matrix and a thick bottom layer of pristine BNC for agile thermal management, the efficient wicking of bulk water, and staying afloat. A decisive advantage of the BNC network is that it enables the fabrication of a lightweight photothermal foam with reduced thermal conductivity and high wet strength. Additionally, the hydrophilic three-dimensional (3D) interconnected porous network of BNC contributes to the fast evaporation of water under ambient solar conditions with reduced vaporization enthalpy by virtue of intermediated water generated via a BNC–water interaction. The fabricated PTFb is found to yield a water evaporation efficiency of 84.3% (under 1054 W m–2) with 4 wt % BT loading. Furthermore, scalable PTFb realized a water production rate of 1.26 L m–2 h–1 under real-time conditions. The developed eco-friendly BNC-supported BT foams could be used in applications such as solar desalination, contaminated water purification, extraction of water from moisture, etc., and thus could address one of the major present-day global concerns of drinking water scarcity.</description><subject>Acetobacteraceae - chemistry</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cellulose - chemistry</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Materials Testing</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Sunlight</subject><subject>Titanium - chemistry</subject><subject>Water Purification</subject><issn>2576-6422</issn><issn>2576-6422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9rGzEQxUVpiEPia45Fx1KwM5L277FJnMQQkkDT8zKrlbCcXcmVtAn5Ev3MlVmn9FIk0CB-84Z5j5BzBksGnF2gDNgOSyYBWCY-kROel8WiyDj__E89I_MQtgDAAQSr6mMyEzlAUWX1Cfl99955t9uY3kgqrunaRuWls1bJqDr6oOKb8y_UaXqJ6ccb7OkDWidV34-9C-riskf5Qp9NRGuQPm1cdHGj_JDAG4dDoJiupSutjTTKxmmERrmX-uF69HT1ijvnMTp_Ro409kHND-8p-Xmzer66W9w_3q6vvt8vUAiIC1lDm6PikKl0GMvzKivbSnPBypKxqtJFLnkLTHZaiE6XOW-LglVZ8kOquhWn5Ouku_Pu16hCbAYT9juhVW4MDU9wDSIvs4QuJ1R6F4JXutl5M6B_bxg0-xiaKYbmEENq-HLQHttBdX_xD9MT8G0CUmOzdaO3adX_qf0BCPuTJg</recordid><startdate>20210517</startdate><enddate>20210517</enddate><creator>Nabeela, Kallayi</creator><creator>Thorat, Meghana Namdeo</creator><creator>Backer, Sumina Namboorimadathil</creator><creator>Ramachandran, Animesh M</creator><creator>Thomas, Reny Thankam</creator><creator>Preethikumar, Gopika</creator><creator>Mohamed, A. Peer</creator><creator>Asok, Adersh</creator><creator>Dastager, Syed Gulam</creator><creator>Pillai, Saju</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8316-1242</orcidid><orcidid>https://orcid.org/0000-0001-8718-9974</orcidid><orcidid>https://orcid.org/0000-0001-9855-6899</orcidid></search><sort><creationdate>20210517</creationdate><title>Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator</title><author>Nabeela, Kallayi ; Thorat, Meghana Namdeo ; Backer, Sumina Namboorimadathil ; Ramachandran, Animesh M ; Thomas, Reny Thankam ; Preethikumar, Gopika ; Mohamed, A. Peer ; Asok, Adersh ; Dastager, Syed Gulam ; Pillai, Saju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-c90b5ae204e4e41155847b8f231771188f65c2b01cdf33df752b66184642ce9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetobacteraceae - chemistry</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cellulose - chemistry</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Materials Testing</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Sunlight</topic><topic>Titanium - chemistry</topic><topic>Water Purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nabeela, Kallayi</creatorcontrib><creatorcontrib>Thorat, Meghana Namdeo</creatorcontrib><creatorcontrib>Backer, Sumina Namboorimadathil</creatorcontrib><creatorcontrib>Ramachandran, Animesh M</creatorcontrib><creatorcontrib>Thomas, Reny Thankam</creatorcontrib><creatorcontrib>Preethikumar, Gopika</creatorcontrib><creatorcontrib>Mohamed, A. Peer</creatorcontrib><creatorcontrib>Asok, Adersh</creatorcontrib><creatorcontrib>Dastager, Syed Gulam</creatorcontrib><creatorcontrib>Pillai, Saju</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied bio materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nabeela, Kallayi</au><au>Thorat, Meghana Namdeo</au><au>Backer, Sumina Namboorimadathil</au><au>Ramachandran, Animesh M</au><au>Thomas, Reny Thankam</au><au>Preethikumar, Gopika</au><au>Mohamed, A. Peer</au><au>Asok, Adersh</au><au>Dastager, Syed Gulam</au><au>Pillai, Saju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator</atitle><jtitle>ACS applied bio materials</jtitle><addtitle>ACS Appl. Bio Mater</addtitle><date>2021-05-17</date><risdate>2021</risdate><volume>4</volume><issue>5</issue><spage>4373</spage><epage>4383</epage><pages>4373-4383</pages><issn>2576-6422</issn><eissn>2576-6422</eissn><abstract>The design and development of scalable, efficient photothermal evaporator systems that reduce microplastic pollution are highly desirable. Herein, a sustainable bacterial nanocellulose (BNC)-based self-floating bilayer photothermal foam (PTFb) is designed that eases the effective confinement of solar light for efficient freshwater production via interfacial heating. The sandwich nanoarchitectured porous bilayer solar evaporator consists of a top solar-harvesting blackbody layer composed of broad-spectrum active black titania (BT) nanoparticles embedded in the BNC matrix and a thick bottom layer of pristine BNC for agile thermal management, the efficient wicking of bulk water, and staying afloat. A decisive advantage of the BNC network is that it enables the fabrication of a lightweight photothermal foam with reduced thermal conductivity and high wet strength. Additionally, the hydrophilic three-dimensional (3D) interconnected porous network of BNC contributes to the fast evaporation of water under ambient solar conditions with reduced vaporization enthalpy by virtue of intermediated water generated via a BNC–water interaction. The fabricated PTFb is found to yield a water evaporation efficiency of 84.3% (under 1054 W m–2) with 4 wt % BT loading. Furthermore, scalable PTFb realized a water production rate of 1.26 L m–2 h–1 under real-time conditions. The developed eco-friendly BNC-supported BT foams could be used in applications such as solar desalination, contaminated water purification, extraction of water from moisture, etc., and thus could address one of the major present-day global concerns of drinking water scarcity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35006849</pmid><doi>10.1021/acsabm.1c00143</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8316-1242</orcidid><orcidid>https://orcid.org/0000-0001-8718-9974</orcidid><orcidid>https://orcid.org/0000-0001-9855-6899</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2576-6422
ispartof ACS applied bio materials, 2021-05, Vol.4 (5), p.4373-4383
issn 2576-6422
2576-6422
language eng
recordid cdi_proquest_miscellaneous_2618903574
source ACS Publications; MEDLINE
subjects Acetobacteraceae - chemistry
Biocompatible Materials - chemistry
Cellulose - chemistry
Hydrophobic and Hydrophilic Interactions
Materials Testing
Nanoparticles - chemistry
Particle Size
Sunlight
Titanium - chemistry
Water Purification
title Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrophilic%203D%20Interconnected%20Network%20of%20Bacterial%20Nanocellulose/Black%20Titania%20Photothermal%20Foams%20as%20an%20Efficient%20Interfacial%20Solar%20Evaporator&rft.jtitle=ACS%20applied%20bio%20materials&rft.au=Nabeela,%20Kallayi&rft.date=2021-05-17&rft.volume=4&rft.issue=5&rft.spage=4373&rft.epage=4383&rft.pages=4373-4383&rft.issn=2576-6422&rft.eissn=2576-6422&rft_id=info:doi/10.1021/acsabm.1c00143&rft_dat=%3Cproquest_cross%3E2618903574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618903574&rft_id=info:pmid/35006849&rfr_iscdi=true