Isovitexin protects against acute liver injury by targeting PTEN, PI3K and BiP via modification of m6A

Isovitexin (IVT) has been shown to have a potential therapeutic effect on acute liver injury (ALI), but its underlying mechanisms especially the targets remain unclear, which was investigated in the present study. Briefly, the targets of IVT were predicted by bioinformatics and then were verified by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmacology 2022-02, Vol.917, p.174749, Article 174749
Hauptverfasser: Huang, Yushen, Chen, Siyun, Pang, Lijun, Feng, Zhongwen, Su, Hongmei, Zhu, Wuchang, Wei, Jinbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Isovitexin (IVT) has been shown to have a potential therapeutic effect on acute liver injury (ALI), but its underlying mechanisms especially the targets remain unclear, which was investigated in the present study. Briefly, the targets of IVT were predicted by bioinformatics and then were verified by multiple examinations using molecular docking, cellular thermal shift assay (CETSA), and Lipopolysaccharide/D-Galactosamine (LPS/D-GalN)-induced ALI animal model. The bioinformatic analysis predicted that the target genes of IVT against ALI were enriched into the PI3K/Akt and ERS-related pathways, in which, molecular docking and CETSA examination verified that the binding sites of IVT likely were PTEN, PI3K and BiP. Furthermore, the possible targets were also verified by animal experiments. The results revealed that IVT significantly ameliorated the hepatic injury, as evidenced by the attenuation of histopathological changes and the reduction in serum aminotransferase and total bilirubin activities. In addition, IVT treatment led to the reduction of PTEN, BiP and ERS-related targets expressions, as well as the elevation of PI3K, Akt and mTOR expressions. Notably, IVT significantly decreased total hepatic m6A level and m6A enrichment of PTEN and BiP, suggesting IVT regulated PTEN and BiP by modulating m6A modification. To sum up, the results indicate that IVT significantly ameliorates ALI, which is attributed to its ability to regulate the PI3K/Akt pathway and ERS by targeting PTEN, PI3K and BiP via modification of m6A. Our finding demonstrates that IVT may be a promising natural medicine for the treatment of ALI. [Display omitted]
ISSN:0014-2999
1879-0712
1879-0712
DOI:10.1016/j.ejphar.2022.174749