Hydroxypropyl Cellulose for Drug Precipitation Inhibition: From the Potential of Molecular Interactions to Performance Considering Microrheology

There has been recent interest in using hydroxypropyl cellulose (HPC) for supersaturating drug formulations. This study investigated the potential for molecular HPC interactions with the model drug celecoxib by integrating novel approaches in the field of drug supersaturation analysis. Following an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmaceutics 2022-02, Vol.19 (2), p.690-703
Hauptverfasser: Niederquell, Andreas, Stoyanov, Edmont, Kuentz, Martin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 703
container_issue 2
container_start_page 690
container_title Molecular pharmaceutics
container_volume 19
creator Niederquell, Andreas
Stoyanov, Edmont
Kuentz, Martin
description There has been recent interest in using hydroxypropyl cellulose (HPC) for supersaturating drug formulations. This study investigated the potential for molecular HPC interactions with the model drug celecoxib by integrating novel approaches in the field of drug supersaturation analysis. Following an initial polymer characterization study, quantum-chemical calculations and molecular dynamics simulations were complemented with results of inverse gas chromatography and broadband diffusing wave spectroscopy. HPC performance was studied regarding drug solubilization and kinetics of desupersaturation using different grades (i.e., HPC-UL, SSL, SL, and L). The results suggested that the potential contribution of dispersive interactions and hydrogen bonding depended strongly on the absence or presence of the aqueous phase. It was proposed that aggregation of HPC polymer chains provided a complex heterogeneity of molecular environments with more or less excluded water for drug interaction. In precipitation experiments at a low aqueous polymer concentration (i.e., 0.01%, w/w), grades L and SL appeared to sustain drug supersaturation better than SSL and UL. However, UL was particularly effective in drug solubilization at pH 6.8. Thus, a better understanding of drug–polymer interactions is important for formulation development, and polymer blends may be used to harness the combined advantages of individual polymer grades.
doi_str_mv 10.1021/acs.molpharmaceut.1c00832
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2618503619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618503619</sourcerecordid><originalsourceid>FETCH-LOGICAL-a363t-89ed1d51026e52d4d00d0fa7e88c093fa195add7be056c1f321f4f6cf9187cc23</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi1E1S_6F5C5cUnwx3qzyw0FSiu1Igc4rxx7nLjyrpexV2L_BT8ZR0krcevJI-uZd-adl5APnC05E_yTNmnZxzDuNfbawJSX3DDWSPGGXHJVyUUjW_H2pW6qC3KV0hNjolJCnpMLqRhT7Ypdkr93s8X4Zx4xjnOgawhhCjEBdRHpV5x2dINg_Oizzj4O9H7Y-60_lJ_pLcae5j3QTcwwZK8DjY4-xgBmChoLmwG1OcCJ5kg3gEW114MBui5_3gL6YUcfvcGIe4gh7uZ35MzpkODm9F6TX7fffq7vFg8_vt-vvzwstKxlXjQtWG5VOUcNStjKMmaZ0ytoGsNa6TRvlbZ2tQWmasOdFNxVrjau5c3KGCGvycejbnH-e4KUu94nU-zrAeKUOlHzRjFZ87ag7REta6aE4LoRfa9x7jjrDoF0JZDuv0C6UyCl9_1pzLTtwb50PidQAHUEDhpPccKhuH6F8D_m36Oo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618503619</pqid></control><display><type>article</type><title>Hydroxypropyl Cellulose for Drug Precipitation Inhibition: From the Potential of Molecular Interactions to Performance Considering Microrheology</title><source>American Chemical Society Publications</source><creator>Niederquell, Andreas ; Stoyanov, Edmont ; Kuentz, Martin</creator><creatorcontrib>Niederquell, Andreas ; Stoyanov, Edmont ; Kuentz, Martin</creatorcontrib><description>There has been recent interest in using hydroxypropyl cellulose (HPC) for supersaturating drug formulations. This study investigated the potential for molecular HPC interactions with the model drug celecoxib by integrating novel approaches in the field of drug supersaturation analysis. Following an initial polymer characterization study, quantum-chemical calculations and molecular dynamics simulations were complemented with results of inverse gas chromatography and broadband diffusing wave spectroscopy. HPC performance was studied regarding drug solubilization and kinetics of desupersaturation using different grades (i.e., HPC-UL, SSL, SL, and L). The results suggested that the potential contribution of dispersive interactions and hydrogen bonding depended strongly on the absence or presence of the aqueous phase. It was proposed that aggregation of HPC polymer chains provided a complex heterogeneity of molecular environments with more or less excluded water for drug interaction. In precipitation experiments at a low aqueous polymer concentration (i.e., 0.01%, w/w), grades L and SL appeared to sustain drug supersaturation better than SSL and UL. However, UL was particularly effective in drug solubilization at pH 6.8. Thus, a better understanding of drug–polymer interactions is important for formulation development, and polymer blends may be used to harness the combined advantages of individual polymer grades.</description><identifier>ISSN: 1543-8384</identifier><identifier>EISSN: 1543-8392</identifier><identifier>DOI: 10.1021/acs.molpharmaceut.1c00832</identifier><identifier>PMID: 35005970</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Molecular pharmaceutics, 2022-02, Vol.19 (2), p.690-703</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a363t-89ed1d51026e52d4d00d0fa7e88c093fa195add7be056c1f321f4f6cf9187cc23</citedby><cites>FETCH-LOGICAL-a363t-89ed1d51026e52d4d00d0fa7e88c093fa195add7be056c1f321f4f6cf9187cc23</cites><orcidid>0000-0003-2963-2645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.molpharmaceut.1c00832$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.molpharmaceut.1c00832$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35005970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niederquell, Andreas</creatorcontrib><creatorcontrib>Stoyanov, Edmont</creatorcontrib><creatorcontrib>Kuentz, Martin</creatorcontrib><title>Hydroxypropyl Cellulose for Drug Precipitation Inhibition: From the Potential of Molecular Interactions to Performance Considering Microrheology</title><title>Molecular pharmaceutics</title><addtitle>Mol. Pharmaceutics</addtitle><description>There has been recent interest in using hydroxypropyl cellulose (HPC) for supersaturating drug formulations. This study investigated the potential for molecular HPC interactions with the model drug celecoxib by integrating novel approaches in the field of drug supersaturation analysis. Following an initial polymer characterization study, quantum-chemical calculations and molecular dynamics simulations were complemented with results of inverse gas chromatography and broadband diffusing wave spectroscopy. HPC performance was studied regarding drug solubilization and kinetics of desupersaturation using different grades (i.e., HPC-UL, SSL, SL, and L). The results suggested that the potential contribution of dispersive interactions and hydrogen bonding depended strongly on the absence or presence of the aqueous phase. It was proposed that aggregation of HPC polymer chains provided a complex heterogeneity of molecular environments with more or less excluded water for drug interaction. In precipitation experiments at a low aqueous polymer concentration (i.e., 0.01%, w/w), grades L and SL appeared to sustain drug supersaturation better than SSL and UL. However, UL was particularly effective in drug solubilization at pH 6.8. Thus, a better understanding of drug–polymer interactions is important for formulation development, and polymer blends may be used to harness the combined advantages of individual polymer grades.</description><issn>1543-8384</issn><issn>1543-8392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhi1E1S_6F5C5cUnwx3qzyw0FSiu1Igc4rxx7nLjyrpexV2L_BT8ZR0krcevJI-uZd-adl5APnC05E_yTNmnZxzDuNfbawJSX3DDWSPGGXHJVyUUjW_H2pW6qC3KV0hNjolJCnpMLqRhT7Ypdkr93s8X4Zx4xjnOgawhhCjEBdRHpV5x2dINg_Oizzj4O9H7Y-60_lJ_pLcae5j3QTcwwZK8DjY4-xgBmChoLmwG1OcCJ5kg3gEW114MBui5_3gL6YUcfvcGIe4gh7uZ35MzpkODm9F6TX7fffq7vFg8_vt-vvzwstKxlXjQtWG5VOUcNStjKMmaZ0ytoGsNa6TRvlbZ2tQWmasOdFNxVrjau5c3KGCGvycejbnH-e4KUu94nU-zrAeKUOlHzRjFZ87ag7REta6aE4LoRfa9x7jjrDoF0JZDuv0C6UyCl9_1pzLTtwb50PidQAHUEDhpPccKhuH6F8D_m36Oo</recordid><startdate>20220207</startdate><enddate>20220207</enddate><creator>Niederquell, Andreas</creator><creator>Stoyanov, Edmont</creator><creator>Kuentz, Martin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2963-2645</orcidid></search><sort><creationdate>20220207</creationdate><title>Hydroxypropyl Cellulose for Drug Precipitation Inhibition: From the Potential of Molecular Interactions to Performance Considering Microrheology</title><author>Niederquell, Andreas ; Stoyanov, Edmont ; Kuentz, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a363t-89ed1d51026e52d4d00d0fa7e88c093fa195add7be056c1f321f4f6cf9187cc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niederquell, Andreas</creatorcontrib><creatorcontrib>Stoyanov, Edmont</creatorcontrib><creatorcontrib>Kuentz, Martin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niederquell, Andreas</au><au>Stoyanov, Edmont</au><au>Kuentz, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxypropyl Cellulose for Drug Precipitation Inhibition: From the Potential of Molecular Interactions to Performance Considering Microrheology</atitle><jtitle>Molecular pharmaceutics</jtitle><addtitle>Mol. Pharmaceutics</addtitle><date>2022-02-07</date><risdate>2022</risdate><volume>19</volume><issue>2</issue><spage>690</spage><epage>703</epage><pages>690-703</pages><issn>1543-8384</issn><eissn>1543-8392</eissn><abstract>There has been recent interest in using hydroxypropyl cellulose (HPC) for supersaturating drug formulations. This study investigated the potential for molecular HPC interactions with the model drug celecoxib by integrating novel approaches in the field of drug supersaturation analysis. Following an initial polymer characterization study, quantum-chemical calculations and molecular dynamics simulations were complemented with results of inverse gas chromatography and broadband diffusing wave spectroscopy. HPC performance was studied regarding drug solubilization and kinetics of desupersaturation using different grades (i.e., HPC-UL, SSL, SL, and L). The results suggested that the potential contribution of dispersive interactions and hydrogen bonding depended strongly on the absence or presence of the aqueous phase. It was proposed that aggregation of HPC polymer chains provided a complex heterogeneity of molecular environments with more or less excluded water for drug interaction. In precipitation experiments at a low aqueous polymer concentration (i.e., 0.01%, w/w), grades L and SL appeared to sustain drug supersaturation better than SSL and UL. However, UL was particularly effective in drug solubilization at pH 6.8. Thus, a better understanding of drug–polymer interactions is important for formulation development, and polymer blends may be used to harness the combined advantages of individual polymer grades.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35005970</pmid><doi>10.1021/acs.molpharmaceut.1c00832</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2963-2645</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1543-8384
ispartof Molecular pharmaceutics, 2022-02, Vol.19 (2), p.690-703
issn 1543-8384
1543-8392
language eng
recordid cdi_proquest_miscellaneous_2618503619
source American Chemical Society Publications
title Hydroxypropyl Cellulose for Drug Precipitation Inhibition: From the Potential of Molecular Interactions to Performance Considering Microrheology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxypropyl%20Cellulose%20for%20Drug%20Precipitation%20Inhibition:%20From%20the%20Potential%20of%20Molecular%20Interactions%20to%20Performance%20Considering%20Microrheology&rft.jtitle=Molecular%20pharmaceutics&rft.au=Niederquell,%20Andreas&rft.date=2022-02-07&rft.volume=19&rft.issue=2&rft.spage=690&rft.epage=703&rft.pages=690-703&rft.issn=1543-8384&rft.eissn=1543-8392&rft_id=info:doi/10.1021/acs.molpharmaceut.1c00832&rft_dat=%3Cproquest_cross%3E2618503619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618503619&rft_id=info:pmid/35005970&rfr_iscdi=true