Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma
Aberrant signaling of mechanistic target of rapamycin (mTOR aka mammalian target of rapamycin) is shown to be linked to tumorigenesis of numerous malignancies including glioblastoma (GB). mTOR is a serine threonine kinase that functions by forming two multiprotein complexes. These complexes are name...
Gespeichert in:
Veröffentlicht in: | Advances in biological regulation 2022-01, Vol.83, p.100854-100854, Article 100854 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100854 |
---|---|
container_issue | |
container_start_page | 100854 |
container_title | Advances in biological regulation |
container_volume | 83 |
creator | Jhanwar-Uniyal, Meena Dominguez, Jose F. Mohan, Avinash L. Tobias, Michael E. Gandhi, Chirag D. |
description | Aberrant signaling of mechanistic target of rapamycin (mTOR aka mammalian target of rapamycin) is shown to be linked to tumorigenesis of numerous malignancies including glioblastoma (GB). mTOR is a serine threonine kinase that functions by forming two multiprotein complexes. These complexes are named mTORC1 and mTORC2 and activate downstream substrates that execute cellular and metabolic functions. This signaling cascade of PI3K/AKT/mTOR is often upregulated due to frequent loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. Since rapamycin and its analogue are less effective in treatment of GB, we used novel ATP-competitive dual inhibitors of mTORC1 and mTORC2, namely, Torin1, Torin2, and XL388. Torin2 caused a concentration dependent pharmacodynamic effects on inhibition of phosphorylation of the mTORC1 substrates S6KSer235/236 and 4E-BP1Thr37/46 as well as the mTORC2 substrate AKTSer473 resulting in suppression of tumor cell proliferation and migration. Torin1 showed similar effects only at higher doses. Another small molecule compound, XL388 suppressed cell proliferation at a higher dose but failed to inhibit cell migration. Torin1 suppressed phosphorylation of PRAS40Thr246, however, Torin2 completely abolished it. XL388 treatment inhibited the phosphorylation of PRAS40Thr246 at higher doses only. These findings underscore the use of novel compounds in treatment of cancer. In addition, formulation of third generation mTOR inhibitor “Rapalink-1” may provide new aspects to target mTOR pathways. Numerous inhibitors are currently being used in clinical trials that are aimed to target activated mTOR pathways. |
doi_str_mv | 10.1016/j.jbior.2021.100854 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2618237590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2212492621000725</els_id><sourcerecordid>2640587782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-fc70937389d97ae737b5c6276afda053b6f69adaa59e29315c8e4a1684a44b573</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EotXST4CELHHh0F38L3Z84IAWWpAqVULlbE0cZ-soiYPtAP32eDelBw7MZWas33uW5iH0mpIdJVS-73d940PcMcJoeSF1JZ6hc8Yo2wrNxfOnmckzdJFST0rJohTVS3TGhdZScXmO4ief3JRhOgx-OuB873DyhwlO2wz5_hc8JBw6PN7dfsM2jPPgfrt0edr3FMPUriO7xJAwHB0izG7J3uIM8eAy9hMu7qEZIOUwwiv0ooMhuYvHvkHfrz7f7b9sb26vv-4_3mwtr1XedlYRzRWvdasVOMVVU1nJlISuBVLxRnZSQwtQacc0p5WtnQAqawFCNJXiG_Ru9Z1j-LG4lM3ok3XDAJMLSzJM0ppxVWlS0Lf_oH1YYrnCkRKkqpUq6AbxlbIxpBRdZ-boR4gPhhJzTMX05pSKOaZi1lSK6s2j99KMrn3S_M2gAB9WwJVj_PQummS9m6xrfXQ2mzb4_37wB3yUnR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640587782</pqid></control><display><type>article</type><title>Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Jhanwar-Uniyal, Meena ; Dominguez, Jose F. ; Mohan, Avinash L. ; Tobias, Michael E. ; Gandhi, Chirag D.</creator><creatorcontrib>Jhanwar-Uniyal, Meena ; Dominguez, Jose F. ; Mohan, Avinash L. ; Tobias, Michael E. ; Gandhi, Chirag D.</creatorcontrib><description>Aberrant signaling of mechanistic target of rapamycin (mTOR aka mammalian target of rapamycin) is shown to be linked to tumorigenesis of numerous malignancies including glioblastoma (GB). mTOR is a serine threonine kinase that functions by forming two multiprotein complexes. These complexes are named mTORC1 and mTORC2 and activate downstream substrates that execute cellular and metabolic functions. This signaling cascade of PI3K/AKT/mTOR is often upregulated due to frequent loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. Since rapamycin and its analogue are less effective in treatment of GB, we used novel ATP-competitive dual inhibitors of mTORC1 and mTORC2, namely, Torin1, Torin2, and XL388. Torin2 caused a concentration dependent pharmacodynamic effects on inhibition of phosphorylation of the mTORC1 substrates S6KSer235/236 and 4E-BP1Thr37/46 as well as the mTORC2 substrate AKTSer473 resulting in suppression of tumor cell proliferation and migration. Torin1 showed similar effects only at higher doses. Another small molecule compound, XL388 suppressed cell proliferation at a higher dose but failed to inhibit cell migration. Torin1 suppressed phosphorylation of PRAS40Thr246, however, Torin2 completely abolished it. XL388 treatment inhibited the phosphorylation of PRAS40Thr246 at higher doses only. These findings underscore the use of novel compounds in treatment of cancer. In addition, formulation of third generation mTOR inhibitor “Rapalink-1” may provide new aspects to target mTOR pathways. Numerous inhibitors are currently being used in clinical trials that are aimed to target activated mTOR pathways.</description><identifier>ISSN: 2212-4926</identifier><identifier>EISSN: 2212-4934</identifier><identifier>DOI: 10.1016/j.jbior.2021.100854</identifier><identifier>PMID: 34996736</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; Cell growth ; Cell migration ; Cell Proliferation ; Clinical trials ; Glioblastoma ; Glioblastoma - drug therapy ; Glioblastoma - genetics ; Glioblastoma - metabolism ; Growth factors ; Humans ; Inhibitors ; Kinases ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mechanistic Target of Rapamycin Complex 2 ; Metabolism ; mTOR ; mTORC1 mTORC2 ; Nutrients ; Pharmacodynamics ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Protein-serine/threonine kinase ; Proto-Oncogene Proteins c-akt - metabolism ; PTEN protein ; Rapamycin ; Signal Transduction ; Signaling ; Substrates ; Therapeutic targets ; TOR protein ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Tumor suppressor genes ; Tumorigenesis ; Tumors</subject><ispartof>Advances in biological regulation, 2022-01, Vol.83, p.100854-100854, Article 100854</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier BV 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-fc70937389d97ae737b5c6276afda053b6f69adaa59e29315c8e4a1684a44b573</citedby><cites>FETCH-LOGICAL-c387t-fc70937389d97ae737b5c6276afda053b6f69adaa59e29315c8e4a1684a44b573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34996736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jhanwar-Uniyal, Meena</creatorcontrib><creatorcontrib>Dominguez, Jose F.</creatorcontrib><creatorcontrib>Mohan, Avinash L.</creatorcontrib><creatorcontrib>Tobias, Michael E.</creatorcontrib><creatorcontrib>Gandhi, Chirag D.</creatorcontrib><title>Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma</title><title>Advances in biological regulation</title><addtitle>Adv Biol Regul</addtitle><description>Aberrant signaling of mechanistic target of rapamycin (mTOR aka mammalian target of rapamycin) is shown to be linked to tumorigenesis of numerous malignancies including glioblastoma (GB). mTOR is a serine threonine kinase that functions by forming two multiprotein complexes. These complexes are named mTORC1 and mTORC2 and activate downstream substrates that execute cellular and metabolic functions. This signaling cascade of PI3K/AKT/mTOR is often upregulated due to frequent loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. Since rapamycin and its analogue are less effective in treatment of GB, we used novel ATP-competitive dual inhibitors of mTORC1 and mTORC2, namely, Torin1, Torin2, and XL388. Torin2 caused a concentration dependent pharmacodynamic effects on inhibition of phosphorylation of the mTORC1 substrates S6KSer235/236 and 4E-BP1Thr37/46 as well as the mTORC2 substrate AKTSer473 resulting in suppression of tumor cell proliferation and migration. Torin1 showed similar effects only at higher doses. Another small molecule compound, XL388 suppressed cell proliferation at a higher dose but failed to inhibit cell migration. Torin1 suppressed phosphorylation of PRAS40Thr246, however, Torin2 completely abolished it. XL388 treatment inhibited the phosphorylation of PRAS40Thr246 at higher doses only. These findings underscore the use of novel compounds in treatment of cancer. In addition, formulation of third generation mTOR inhibitor “Rapalink-1” may provide new aspects to target mTOR pathways. Numerous inhibitors are currently being used in clinical trials that are aimed to target activated mTOR pathways.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>Cell growth</subject><subject>Cell migration</subject><subject>Cell Proliferation</subject><subject>Clinical trials</subject><subject>Glioblastoma</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - metabolism</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>Kinases</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 2</subject><subject>Metabolism</subject><subject>mTOR</subject><subject>mTORC1 mTORC2</subject><subject>Nutrients</subject><subject>Pharmacodynamics</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Protein-serine/threonine kinase</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>PTEN protein</subject><subject>Rapamycin</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Substrates</subject><subject>Therapeutic targets</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Tumor suppressor genes</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><issn>2212-4926</issn><issn>2212-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EotXST4CELHHh0F38L3Z84IAWWpAqVULlbE0cZ-soiYPtAP32eDelBw7MZWas33uW5iH0mpIdJVS-73d940PcMcJoeSF1JZ6hc8Yo2wrNxfOnmckzdJFST0rJohTVS3TGhdZScXmO4ief3JRhOgx-OuB873DyhwlO2wz5_hc8JBw6PN7dfsM2jPPgfrt0edr3FMPUriO7xJAwHB0izG7J3uIM8eAy9hMu7qEZIOUwwiv0ooMhuYvHvkHfrz7f7b9sb26vv-4_3mwtr1XedlYRzRWvdasVOMVVU1nJlISuBVLxRnZSQwtQacc0p5WtnQAqawFCNJXiG_Ru9Z1j-LG4lM3ok3XDAJMLSzJM0ppxVWlS0Lf_oH1YYrnCkRKkqpUq6AbxlbIxpBRdZ-boR4gPhhJzTMX05pSKOaZi1lSK6s2j99KMrn3S_M2gAB9WwJVj_PQummS9m6xrfXQ2mzb4_37wB3yUnR8</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Jhanwar-Uniyal, Meena</creator><creator>Dominguez, Jose F.</creator><creator>Mohan, Avinash L.</creator><creator>Tobias, Michael E.</creator><creator>Gandhi, Chirag D.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20220101</creationdate><title>Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma</title><author>Jhanwar-Uniyal, Meena ; Dominguez, Jose F. ; Mohan, Avinash L. ; Tobias, Michael E. ; Gandhi, Chirag D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-fc70937389d97ae737b5c6276afda053b6f69adaa59e29315c8e4a1684a44b573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>Cell growth</topic><topic>Cell migration</topic><topic>Cell Proliferation</topic><topic>Clinical trials</topic><topic>Glioblastoma</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - metabolism</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>Kinases</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 2</topic><topic>Metabolism</topic><topic>mTOR</topic><topic>mTORC1 mTORC2</topic><topic>Nutrients</topic><topic>Pharmacodynamics</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Protein-serine/threonine kinase</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>PTEN protein</topic><topic>Rapamycin</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Substrates</topic><topic>Therapeutic targets</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Tumor suppressor genes</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jhanwar-Uniyal, Meena</creatorcontrib><creatorcontrib>Dominguez, Jose F.</creatorcontrib><creatorcontrib>Mohan, Avinash L.</creatorcontrib><creatorcontrib>Tobias, Michael E.</creatorcontrib><creatorcontrib>Gandhi, Chirag D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Advances in biological regulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jhanwar-Uniyal, Meena</au><au>Dominguez, Jose F.</au><au>Mohan, Avinash L.</au><au>Tobias, Michael E.</au><au>Gandhi, Chirag D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma</atitle><jtitle>Advances in biological regulation</jtitle><addtitle>Adv Biol Regul</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>83</volume><spage>100854</spage><epage>100854</epage><pages>100854-100854</pages><artnum>100854</artnum><issn>2212-4926</issn><eissn>2212-4934</eissn><abstract>Aberrant signaling of mechanistic target of rapamycin (mTOR aka mammalian target of rapamycin) is shown to be linked to tumorigenesis of numerous malignancies including glioblastoma (GB). mTOR is a serine threonine kinase that functions by forming two multiprotein complexes. These complexes are named mTORC1 and mTORC2 and activate downstream substrates that execute cellular and metabolic functions. This signaling cascade of PI3K/AKT/mTOR is often upregulated due to frequent loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. Since rapamycin and its analogue are less effective in treatment of GB, we used novel ATP-competitive dual inhibitors of mTORC1 and mTORC2, namely, Torin1, Torin2, and XL388. Torin2 caused a concentration dependent pharmacodynamic effects on inhibition of phosphorylation of the mTORC1 substrates S6KSer235/236 and 4E-BP1Thr37/46 as well as the mTORC2 substrate AKTSer473 resulting in suppression of tumor cell proliferation and migration. Torin1 showed similar effects only at higher doses. Another small molecule compound, XL388 suppressed cell proliferation at a higher dose but failed to inhibit cell migration. Torin1 suppressed phosphorylation of PRAS40Thr246, however, Torin2 completely abolished it. XL388 treatment inhibited the phosphorylation of PRAS40Thr246 at higher doses only. These findings underscore the use of novel compounds in treatment of cancer. In addition, formulation of third generation mTOR inhibitor “Rapalink-1” may provide new aspects to target mTOR pathways. Numerous inhibitors are currently being used in clinical trials that are aimed to target activated mTOR pathways.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34996736</pmid><doi>10.1016/j.jbior.2021.100854</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2212-4926 |
ispartof | Advances in biological regulation, 2022-01, Vol.83, p.100854-100854, Article 100854 |
issn | 2212-4926 2212-4934 |
language | eng |
recordid | cdi_proquest_miscellaneous_2618237590 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | 1-Phosphatidylinositol 3-kinase AKT protein Cell growth Cell migration Cell Proliferation Clinical trials Glioblastoma Glioblastoma - drug therapy Glioblastoma - genetics Glioblastoma - metabolism Growth factors Humans Inhibitors Kinases Mechanistic Target of Rapamycin Complex 1 - metabolism Mechanistic Target of Rapamycin Complex 2 Metabolism mTOR mTORC1 mTORC2 Nutrients Pharmacodynamics Phosphatidylinositol 3-Kinases - genetics Phosphatidylinositol 3-Kinases - metabolism Phosphorylation Protein-serine/threonine kinase Proto-Oncogene Proteins c-akt - metabolism PTEN protein Rapamycin Signal Transduction Signaling Substrates Therapeutic targets TOR protein TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism Tumor suppressor genes Tumorigenesis Tumors |
title | Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disentangling%20the%20signaling%20pathways%20of%20mTOR%20complexes,%20mTORC1%20and%20mTORC2,%20as%20a%20therapeutic%20target%20in%20glioblastoma&rft.jtitle=Advances%20in%20biological%20regulation&rft.au=Jhanwar-Uniyal,%20Meena&rft.date=2022-01-01&rft.volume=83&rft.spage=100854&rft.epage=100854&rft.pages=100854-100854&rft.artnum=100854&rft.issn=2212-4926&rft.eissn=2212-4934&rft_id=info:doi/10.1016/j.jbior.2021.100854&rft_dat=%3Cproquest_cross%3E2640587782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640587782&rft_id=info:pmid/34996736&rft_els_id=S2212492621000725&rfr_iscdi=true |