Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma

Aberrant signaling of mechanistic target of rapamycin (mTOR aka mammalian target of rapamycin) is shown to be linked to tumorigenesis of numerous malignancies including glioblastoma (GB). mTOR is a serine threonine kinase that functions by forming two multiprotein complexes. These complexes are name...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in biological regulation 2022-01, Vol.83, p.100854-100854, Article 100854
Hauptverfasser: Jhanwar-Uniyal, Meena, Dominguez, Jose F., Mohan, Avinash L., Tobias, Michael E., Gandhi, Chirag D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100854
container_issue
container_start_page 100854
container_title Advances in biological regulation
container_volume 83
creator Jhanwar-Uniyal, Meena
Dominguez, Jose F.
Mohan, Avinash L.
Tobias, Michael E.
Gandhi, Chirag D.
description Aberrant signaling of mechanistic target of rapamycin (mTOR aka mammalian target of rapamycin) is shown to be linked to tumorigenesis of numerous malignancies including glioblastoma (GB). mTOR is a serine threonine kinase that functions by forming two multiprotein complexes. These complexes are named mTORC1 and mTORC2 and activate downstream substrates that execute cellular and metabolic functions. This signaling cascade of PI3K/AKT/mTOR is often upregulated due to frequent loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. Since rapamycin and its analogue are less effective in treatment of GB, we used novel ATP-competitive dual inhibitors of mTORC1 and mTORC2, namely, Torin1, Torin2, and XL388. Torin2 caused a concentration dependent pharmacodynamic effects on inhibition of phosphorylation of the mTORC1 substrates S6KSer235/236 and 4E-BP1Thr37/46 as well as the mTORC2 substrate AKTSer473 resulting in suppression of tumor cell proliferation and migration. Torin1 showed similar effects only at higher doses. Another small molecule compound, XL388 suppressed cell proliferation at a higher dose but failed to inhibit cell migration. Torin1 suppressed phosphorylation of PRAS40Thr246, however, Torin2 completely abolished it. XL388 treatment inhibited the phosphorylation of PRAS40Thr246 at higher doses only. These findings underscore the use of novel compounds in treatment of cancer. In addition, formulation of third generation mTOR inhibitor “Rapalink-1” may provide new aspects to target mTOR pathways. Numerous inhibitors are currently being used in clinical trials that are aimed to target activated mTOR pathways.
doi_str_mv 10.1016/j.jbior.2021.100854
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2618237590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2212492621000725</els_id><sourcerecordid>2640587782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-fc70937389d97ae737b5c6276afda053b6f69adaa59e29315c8e4a1684a44b573</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EotXST4CELHHh0F38L3Z84IAWWpAqVULlbE0cZ-soiYPtAP32eDelBw7MZWas33uW5iH0mpIdJVS-73d940PcMcJoeSF1JZ6hc8Yo2wrNxfOnmckzdJFST0rJohTVS3TGhdZScXmO4ief3JRhOgx-OuB873DyhwlO2wz5_hc8JBw6PN7dfsM2jPPgfrt0edr3FMPUriO7xJAwHB0izG7J3uIM8eAy9hMu7qEZIOUwwiv0ooMhuYvHvkHfrz7f7b9sb26vv-4_3mwtr1XedlYRzRWvdasVOMVVU1nJlISuBVLxRnZSQwtQacc0p5WtnQAqawFCNJXiG_Ru9Z1j-LG4lM3ok3XDAJMLSzJM0ppxVWlS0Lf_oH1YYrnCkRKkqpUq6AbxlbIxpBRdZ-boR4gPhhJzTMX05pSKOaZi1lSK6s2j99KMrn3S_M2gAB9WwJVj_PQummS9m6xrfXQ2mzb4_37wB3yUnR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640587782</pqid></control><display><type>article</type><title>Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Jhanwar-Uniyal, Meena ; Dominguez, Jose F. ; Mohan, Avinash L. ; Tobias, Michael E. ; Gandhi, Chirag D.</creator><creatorcontrib>Jhanwar-Uniyal, Meena ; Dominguez, Jose F. ; Mohan, Avinash L. ; Tobias, Michael E. ; Gandhi, Chirag D.</creatorcontrib><description>Aberrant signaling of mechanistic target of rapamycin (mTOR aka mammalian target of rapamycin) is shown to be linked to tumorigenesis of numerous malignancies including glioblastoma (GB). mTOR is a serine threonine kinase that functions by forming two multiprotein complexes. These complexes are named mTORC1 and mTORC2 and activate downstream substrates that execute cellular and metabolic functions. This signaling cascade of PI3K/AKT/mTOR is often upregulated due to frequent loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. Since rapamycin and its analogue are less effective in treatment of GB, we used novel ATP-competitive dual inhibitors of mTORC1 and mTORC2, namely, Torin1, Torin2, and XL388. Torin2 caused a concentration dependent pharmacodynamic effects on inhibition of phosphorylation of the mTORC1 substrates S6KSer235/236 and 4E-BP1Thr37/46 as well as the mTORC2 substrate AKTSer473 resulting in suppression of tumor cell proliferation and migration. Torin1 showed similar effects only at higher doses. Another small molecule compound, XL388 suppressed cell proliferation at a higher dose but failed to inhibit cell migration. Torin1 suppressed phosphorylation of PRAS40Thr246, however, Torin2 completely abolished it. XL388 treatment inhibited the phosphorylation of PRAS40Thr246 at higher doses only. These findings underscore the use of novel compounds in treatment of cancer. In addition, formulation of third generation mTOR inhibitor “Rapalink-1” may provide new aspects to target mTOR pathways. Numerous inhibitors are currently being used in clinical trials that are aimed to target activated mTOR pathways.</description><identifier>ISSN: 2212-4926</identifier><identifier>EISSN: 2212-4934</identifier><identifier>DOI: 10.1016/j.jbior.2021.100854</identifier><identifier>PMID: 34996736</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; Cell growth ; Cell migration ; Cell Proliferation ; Clinical trials ; Glioblastoma ; Glioblastoma - drug therapy ; Glioblastoma - genetics ; Glioblastoma - metabolism ; Growth factors ; Humans ; Inhibitors ; Kinases ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mechanistic Target of Rapamycin Complex 2 ; Metabolism ; mTOR ; mTORC1 mTORC2 ; Nutrients ; Pharmacodynamics ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Protein-serine/threonine kinase ; Proto-Oncogene Proteins c-akt - metabolism ; PTEN protein ; Rapamycin ; Signal Transduction ; Signaling ; Substrates ; Therapeutic targets ; TOR protein ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Tumor suppressor genes ; Tumorigenesis ; Tumors</subject><ispartof>Advances in biological regulation, 2022-01, Vol.83, p.100854-100854, Article 100854</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier BV 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-fc70937389d97ae737b5c6276afda053b6f69adaa59e29315c8e4a1684a44b573</citedby><cites>FETCH-LOGICAL-c387t-fc70937389d97ae737b5c6276afda053b6f69adaa59e29315c8e4a1684a44b573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34996736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jhanwar-Uniyal, Meena</creatorcontrib><creatorcontrib>Dominguez, Jose F.</creatorcontrib><creatorcontrib>Mohan, Avinash L.</creatorcontrib><creatorcontrib>Tobias, Michael E.</creatorcontrib><creatorcontrib>Gandhi, Chirag D.</creatorcontrib><title>Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma</title><title>Advances in biological regulation</title><addtitle>Adv Biol Regul</addtitle><description>Aberrant signaling of mechanistic target of rapamycin (mTOR aka mammalian target of rapamycin) is shown to be linked to tumorigenesis of numerous malignancies including glioblastoma (GB). mTOR is a serine threonine kinase that functions by forming two multiprotein complexes. These complexes are named mTORC1 and mTORC2 and activate downstream substrates that execute cellular and metabolic functions. This signaling cascade of PI3K/AKT/mTOR is often upregulated due to frequent loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. Since rapamycin and its analogue are less effective in treatment of GB, we used novel ATP-competitive dual inhibitors of mTORC1 and mTORC2, namely, Torin1, Torin2, and XL388. Torin2 caused a concentration dependent pharmacodynamic effects on inhibition of phosphorylation of the mTORC1 substrates S6KSer235/236 and 4E-BP1Thr37/46 as well as the mTORC2 substrate AKTSer473 resulting in suppression of tumor cell proliferation and migration. Torin1 showed similar effects only at higher doses. Another small molecule compound, XL388 suppressed cell proliferation at a higher dose but failed to inhibit cell migration. Torin1 suppressed phosphorylation of PRAS40Thr246, however, Torin2 completely abolished it. XL388 treatment inhibited the phosphorylation of PRAS40Thr246 at higher doses only. These findings underscore the use of novel compounds in treatment of cancer. In addition, formulation of third generation mTOR inhibitor “Rapalink-1” may provide new aspects to target mTOR pathways. Numerous inhibitors are currently being used in clinical trials that are aimed to target activated mTOR pathways.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>Cell growth</subject><subject>Cell migration</subject><subject>Cell Proliferation</subject><subject>Clinical trials</subject><subject>Glioblastoma</subject><subject>Glioblastoma - drug therapy</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - metabolism</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>Kinases</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 2</subject><subject>Metabolism</subject><subject>mTOR</subject><subject>mTORC1 mTORC2</subject><subject>Nutrients</subject><subject>Pharmacodynamics</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Protein-serine/threonine kinase</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>PTEN protein</subject><subject>Rapamycin</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Substrates</subject><subject>Therapeutic targets</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Tumor suppressor genes</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><issn>2212-4926</issn><issn>2212-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EotXST4CELHHh0F38L3Z84IAWWpAqVULlbE0cZ-soiYPtAP32eDelBw7MZWas33uW5iH0mpIdJVS-73d940PcMcJoeSF1JZ6hc8Yo2wrNxfOnmckzdJFST0rJohTVS3TGhdZScXmO4ief3JRhOgx-OuB873DyhwlO2wz5_hc8JBw6PN7dfsM2jPPgfrt0edr3FMPUriO7xJAwHB0izG7J3uIM8eAy9hMu7qEZIOUwwiv0ooMhuYvHvkHfrz7f7b9sb26vv-4_3mwtr1XedlYRzRWvdasVOMVVU1nJlISuBVLxRnZSQwtQacc0p5WtnQAqawFCNJXiG_Ru9Z1j-LG4lM3ok3XDAJMLSzJM0ppxVWlS0Lf_oH1YYrnCkRKkqpUq6AbxlbIxpBRdZ-boR4gPhhJzTMX05pSKOaZi1lSK6s2j99KMrn3S_M2gAB9WwJVj_PQummS9m6xrfXQ2mzb4_37wB3yUnR8</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Jhanwar-Uniyal, Meena</creator><creator>Dominguez, Jose F.</creator><creator>Mohan, Avinash L.</creator><creator>Tobias, Michael E.</creator><creator>Gandhi, Chirag D.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20220101</creationdate><title>Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma</title><author>Jhanwar-Uniyal, Meena ; Dominguez, Jose F. ; Mohan, Avinash L. ; Tobias, Michael E. ; Gandhi, Chirag D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-fc70937389d97ae737b5c6276afda053b6f69adaa59e29315c8e4a1684a44b573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>Cell growth</topic><topic>Cell migration</topic><topic>Cell Proliferation</topic><topic>Clinical trials</topic><topic>Glioblastoma</topic><topic>Glioblastoma - drug therapy</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - metabolism</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>Kinases</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 2</topic><topic>Metabolism</topic><topic>mTOR</topic><topic>mTORC1 mTORC2</topic><topic>Nutrients</topic><topic>Pharmacodynamics</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Protein-serine/threonine kinase</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>PTEN protein</topic><topic>Rapamycin</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Substrates</topic><topic>Therapeutic targets</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Tumor suppressor genes</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jhanwar-Uniyal, Meena</creatorcontrib><creatorcontrib>Dominguez, Jose F.</creatorcontrib><creatorcontrib>Mohan, Avinash L.</creatorcontrib><creatorcontrib>Tobias, Michael E.</creatorcontrib><creatorcontrib>Gandhi, Chirag D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Advances in biological regulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jhanwar-Uniyal, Meena</au><au>Dominguez, Jose F.</au><au>Mohan, Avinash L.</au><au>Tobias, Michael E.</au><au>Gandhi, Chirag D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma</atitle><jtitle>Advances in biological regulation</jtitle><addtitle>Adv Biol Regul</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>83</volume><spage>100854</spage><epage>100854</epage><pages>100854-100854</pages><artnum>100854</artnum><issn>2212-4926</issn><eissn>2212-4934</eissn><abstract>Aberrant signaling of mechanistic target of rapamycin (mTOR aka mammalian target of rapamycin) is shown to be linked to tumorigenesis of numerous malignancies including glioblastoma (GB). mTOR is a serine threonine kinase that functions by forming two multiprotein complexes. These complexes are named mTORC1 and mTORC2 and activate downstream substrates that execute cellular and metabolic functions. This signaling cascade of PI3K/AKT/mTOR is often upregulated due to frequent loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. Since rapamycin and its analogue are less effective in treatment of GB, we used novel ATP-competitive dual inhibitors of mTORC1 and mTORC2, namely, Torin1, Torin2, and XL388. Torin2 caused a concentration dependent pharmacodynamic effects on inhibition of phosphorylation of the mTORC1 substrates S6KSer235/236 and 4E-BP1Thr37/46 as well as the mTORC2 substrate AKTSer473 resulting in suppression of tumor cell proliferation and migration. Torin1 showed similar effects only at higher doses. Another small molecule compound, XL388 suppressed cell proliferation at a higher dose but failed to inhibit cell migration. Torin1 suppressed phosphorylation of PRAS40Thr246, however, Torin2 completely abolished it. XL388 treatment inhibited the phosphorylation of PRAS40Thr246 at higher doses only. These findings underscore the use of novel compounds in treatment of cancer. In addition, formulation of third generation mTOR inhibitor “Rapalink-1” may provide new aspects to target mTOR pathways. Numerous inhibitors are currently being used in clinical trials that are aimed to target activated mTOR pathways.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34996736</pmid><doi>10.1016/j.jbior.2021.100854</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2212-4926
ispartof Advances in biological regulation, 2022-01, Vol.83, p.100854-100854, Article 100854
issn 2212-4926
2212-4934
language eng
recordid cdi_proquest_miscellaneous_2618237590
source MEDLINE; Alma/SFX Local Collection
subjects 1-Phosphatidylinositol 3-kinase
AKT protein
Cell growth
Cell migration
Cell Proliferation
Clinical trials
Glioblastoma
Glioblastoma - drug therapy
Glioblastoma - genetics
Glioblastoma - metabolism
Growth factors
Humans
Inhibitors
Kinases
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mechanistic Target of Rapamycin Complex 2
Metabolism
mTOR
mTORC1 mTORC2
Nutrients
Pharmacodynamics
Phosphatidylinositol 3-Kinases - genetics
Phosphatidylinositol 3-Kinases - metabolism
Phosphorylation
Protein-serine/threonine kinase
Proto-Oncogene Proteins c-akt - metabolism
PTEN protein
Rapamycin
Signal Transduction
Signaling
Substrates
Therapeutic targets
TOR protein
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - metabolism
Tumor suppressor genes
Tumorigenesis
Tumors
title Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disentangling%20the%20signaling%20pathways%20of%20mTOR%20complexes,%20mTORC1%20and%20mTORC2,%20as%20a%20therapeutic%20target%20in%20glioblastoma&rft.jtitle=Advances%20in%20biological%20regulation&rft.au=Jhanwar-Uniyal,%20Meena&rft.date=2022-01-01&rft.volume=83&rft.spage=100854&rft.epage=100854&rft.pages=100854-100854&rft.artnum=100854&rft.issn=2212-4926&rft.eissn=2212-4934&rft_id=info:doi/10.1016/j.jbior.2021.100854&rft_dat=%3Cproquest_cross%3E2640587782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2640587782&rft_id=info:pmid/34996736&rft_els_id=S2212492621000725&rfr_iscdi=true