Glycopeptide-nanotransforrs eyedrops with enhanced permeability and retention for preventing fundus neovascularization

Efficient and non-invasive drug delivery to the fundus has always been a medical difficulty. Here, a co-assembled glycopeptide nanotransforrs (GPNTs) named MRP@DOX as a drug delivery system is reported. The MRP@DOX co-assemble nanoparticles consisting of glycopeptide, cationic peptide, and doxorubic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2022-02, Vol.281, p.121361-121361, Article 121361
Hauptverfasser: Li, Ke, Li, Ruxiang, Zou, Pengfei, Li, Li, Wang, Huajun, Kong, Deqian, Zheng, Guangying, Li, Li-Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121361
container_issue
container_start_page 121361
container_title Biomaterials
container_volume 281
creator Li, Ke
Li, Ruxiang
Zou, Pengfei
Li, Li
Wang, Huajun
Kong, Deqian
Zheng, Guangying
Li, Li-Li
description Efficient and non-invasive drug delivery to the fundus has always been a medical difficulty. Here, a co-assembled glycopeptide nanotransforrs (GPNTs) named MRP@DOX as a drug delivery system is reported. The MRP@DOX co-assemble nanoparticles consisting of glycopeptide, cationic peptide, and doxorubicin (DOX). The nanoparticles are positively charged with the nano-size, which can be induced transformation by legumain cleavage. Once administrate to the eyes, MRP@DOX has a high penetration through the ocular surface to specifically targets M2 macrophages in the fundus. Then, the mannose receptor mediates phagocytosis and intracellular highly expressed legumain induces its nanofibrous transformation, which contributes to a 44.7% DOX retention in cells at 24 h than that of the non-transformed controls (MAP@DOX: 5.1%). The nanofiber transformation provides an inhibition of exocytosis, which explains the higher retention of the delivered drug. In the mouse OIR model, MRP@DOX completely restores the physiological angiogenesis and reduces pathological neovascularization. Pathological neovascularization branches and cell nuclei that break through the inner limiting membrane are reduced by 55% and 72%, respectively, which are 25% and 20% less than those in the non-transformed controls. In addition, MRP@DOX also has good histocompatibility, which provides a possible strategy for non-invasive treatment of fundus diseases in the future.
doi_str_mv 10.1016/j.biomaterials.2021.121361
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2618228290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961221007171</els_id><sourcerecordid>2618228290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-d4ef27e6dc5d042e96f3292c45f545ea4be7fae788b7bc5f45930203d67a74903</originalsourceid><addsrcrecordid>eNqNkM1O3DAURi1UVIahr4AsVt1ksB3nr7sK2gFpJDawthz7GjxK7GA7g4anb9KZoi5ZWVc6n-93D0JXlKwooeX1dtVa38sEwcourhhhdEUZzUt6gha0ruqsaEjxBS0I5SxrSsrO0HmMWzLNhLOv6CznTUNJzhdot-72yg8wJKshc9L5FKSLxocQMexBBz9E_GbTCwb3Ip0CjQcIPcjWdjbtsXQaB0jgkvUOTzk8BNjNo3vGZnR6jNiB38moxk4G-y5n8AKdmqk7fDu-S_T0-9fjzV22eVjf3_zcZCqvSco0B8MqKLUq9NQcmtLkrGGKF6bgBUjeQmUkVHXdVq0qDC-anDCS67KSFW9IvkTfD_8Owb-OEJPobVTQdXLqNEbBSlozVrO_6I8DqoKPMYARQ7C9DHtBiZi9i63437uYvYuD9yl8edwztj3oj-g_0RNwewBgunZnIYioLMw6bQCVhPb2M3v-ANcvnxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618228290</pqid></control><display><type>article</type><title>Glycopeptide-nanotransforrs eyedrops with enhanced permeability and retention for preventing fundus neovascularization</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Li, Ke ; Li, Ruxiang ; Zou, Pengfei ; Li, Li ; Wang, Huajun ; Kong, Deqian ; Zheng, Guangying ; Li, Li-Li</creator><creatorcontrib>Li, Ke ; Li, Ruxiang ; Zou, Pengfei ; Li, Li ; Wang, Huajun ; Kong, Deqian ; Zheng, Guangying ; Li, Li-Li</creatorcontrib><description>Efficient and non-invasive drug delivery to the fundus has always been a medical difficulty. Here, a co-assembled glycopeptide nanotransforrs (GPNTs) named MRP@DOX as a drug delivery system is reported. The MRP@DOX co-assemble nanoparticles consisting of glycopeptide, cationic peptide, and doxorubicin (DOX). The nanoparticles are positively charged with the nano-size, which can be induced transformation by legumain cleavage. Once administrate to the eyes, MRP@DOX has a high penetration through the ocular surface to specifically targets M2 macrophages in the fundus. Then, the mannose receptor mediates phagocytosis and intracellular highly expressed legumain induces its nanofibrous transformation, which contributes to a 44.7% DOX retention in cells at 24 h than that of the non-transformed controls (MAP@DOX: 5.1%). The nanofiber transformation provides an inhibition of exocytosis, which explains the higher retention of the delivered drug. In the mouse OIR model, MRP@DOX completely restores the physiological angiogenesis and reduces pathological neovascularization. Pathological neovascularization branches and cell nuclei that break through the inner limiting membrane are reduced by 55% and 72%, respectively, which are 25% and 20% less than those in the non-transformed controls. In addition, MRP@DOX also has good histocompatibility, which provides a possible strategy for non-invasive treatment of fundus diseases in the future.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2021.121361</identifier><identifier>PMID: 34991034</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Cell Line, Tumor ; Doxorubicin - therapeutic use ; Drug Carriers ; Drug delivery ; Drug Delivery Systems ; Eyedrops ; Glycopeptide ; Glycopeptides ; Mice ; Nanoparticles ; Neovascularization ; Neovascularization, Pathologic - drug therapy ; Ophthalmic Solutions ; Permeability ; Self-assembly</subject><ispartof>Biomaterials, 2022-02, Vol.281, p.121361-121361, Article 121361</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-d4ef27e6dc5d042e96f3292c45f545ea4be7fae788b7bc5f45930203d67a74903</citedby><cites>FETCH-LOGICAL-c380t-d4ef27e6dc5d042e96f3292c45f545ea4be7fae788b7bc5f45930203d67a74903</cites><orcidid>0000-0002-9793-3995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2021.121361$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34991034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Li, Ruxiang</creatorcontrib><creatorcontrib>Zou, Pengfei</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Wang, Huajun</creatorcontrib><creatorcontrib>Kong, Deqian</creatorcontrib><creatorcontrib>Zheng, Guangying</creatorcontrib><creatorcontrib>Li, Li-Li</creatorcontrib><title>Glycopeptide-nanotransforrs eyedrops with enhanced permeability and retention for preventing fundus neovascularization</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Efficient and non-invasive drug delivery to the fundus has always been a medical difficulty. Here, a co-assembled glycopeptide nanotransforrs (GPNTs) named MRP@DOX as a drug delivery system is reported. The MRP@DOX co-assemble nanoparticles consisting of glycopeptide, cationic peptide, and doxorubicin (DOX). The nanoparticles are positively charged with the nano-size, which can be induced transformation by legumain cleavage. Once administrate to the eyes, MRP@DOX has a high penetration through the ocular surface to specifically targets M2 macrophages in the fundus. Then, the mannose receptor mediates phagocytosis and intracellular highly expressed legumain induces its nanofibrous transformation, which contributes to a 44.7% DOX retention in cells at 24 h than that of the non-transformed controls (MAP@DOX: 5.1%). The nanofiber transformation provides an inhibition of exocytosis, which explains the higher retention of the delivered drug. In the mouse OIR model, MRP@DOX completely restores the physiological angiogenesis and reduces pathological neovascularization. Pathological neovascularization branches and cell nuclei that break through the inner limiting membrane are reduced by 55% and 72%, respectively, which are 25% and 20% less than those in the non-transformed controls. In addition, MRP@DOX also has good histocompatibility, which provides a possible strategy for non-invasive treatment of fundus diseases in the future.</description><subject>Animals</subject><subject>Cell Line, Tumor</subject><subject>Doxorubicin - therapeutic use</subject><subject>Drug Carriers</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Eyedrops</subject><subject>Glycopeptide</subject><subject>Glycopeptides</subject><subject>Mice</subject><subject>Nanoparticles</subject><subject>Neovascularization</subject><subject>Neovascularization, Pathologic - drug therapy</subject><subject>Ophthalmic Solutions</subject><subject>Permeability</subject><subject>Self-assembly</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1O3DAURi1UVIahr4AsVt1ksB3nr7sK2gFpJDawthz7GjxK7GA7g4anb9KZoi5ZWVc6n-93D0JXlKwooeX1dtVa38sEwcourhhhdEUZzUt6gha0ruqsaEjxBS0I5SxrSsrO0HmMWzLNhLOv6CznTUNJzhdot-72yg8wJKshc9L5FKSLxocQMexBBz9E_GbTCwb3Ip0CjQcIPcjWdjbtsXQaB0jgkvUOTzk8BNjNo3vGZnR6jNiB38moxk4G-y5n8AKdmqk7fDu-S_T0-9fjzV22eVjf3_zcZCqvSco0B8MqKLUq9NQcmtLkrGGKF6bgBUjeQmUkVHXdVq0qDC-anDCS67KSFW9IvkTfD_8Owb-OEJPobVTQdXLqNEbBSlozVrO_6I8DqoKPMYARQ7C9DHtBiZi9i63437uYvYuD9yl8edwztj3oj-g_0RNwewBgunZnIYioLMw6bQCVhPb2M3v-ANcvnxw</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Li, Ke</creator><creator>Li, Ruxiang</creator><creator>Zou, Pengfei</creator><creator>Li, Li</creator><creator>Wang, Huajun</creator><creator>Kong, Deqian</creator><creator>Zheng, Guangying</creator><creator>Li, Li-Li</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9793-3995</orcidid></search><sort><creationdate>202202</creationdate><title>Glycopeptide-nanotransforrs eyedrops with enhanced permeability and retention for preventing fundus neovascularization</title><author>Li, Ke ; Li, Ruxiang ; Zou, Pengfei ; Li, Li ; Wang, Huajun ; Kong, Deqian ; Zheng, Guangying ; Li, Li-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-d4ef27e6dc5d042e96f3292c45f545ea4be7fae788b7bc5f45930203d67a74903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Cell Line, Tumor</topic><topic>Doxorubicin - therapeutic use</topic><topic>Drug Carriers</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Eyedrops</topic><topic>Glycopeptide</topic><topic>Glycopeptides</topic><topic>Mice</topic><topic>Nanoparticles</topic><topic>Neovascularization</topic><topic>Neovascularization, Pathologic - drug therapy</topic><topic>Ophthalmic Solutions</topic><topic>Permeability</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Li, Ruxiang</creatorcontrib><creatorcontrib>Zou, Pengfei</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Wang, Huajun</creatorcontrib><creatorcontrib>Kong, Deqian</creatorcontrib><creatorcontrib>Zheng, Guangying</creatorcontrib><creatorcontrib>Li, Li-Li</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ke</au><au>Li, Ruxiang</au><au>Zou, Pengfei</au><au>Li, Li</au><au>Wang, Huajun</au><au>Kong, Deqian</au><au>Zheng, Guangying</au><au>Li, Li-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycopeptide-nanotransforrs eyedrops with enhanced permeability and retention for preventing fundus neovascularization</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2022-02</date><risdate>2022</risdate><volume>281</volume><spage>121361</spage><epage>121361</epage><pages>121361-121361</pages><artnum>121361</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Efficient and non-invasive drug delivery to the fundus has always been a medical difficulty. Here, a co-assembled glycopeptide nanotransforrs (GPNTs) named MRP@DOX as a drug delivery system is reported. The MRP@DOX co-assemble nanoparticles consisting of glycopeptide, cationic peptide, and doxorubicin (DOX). The nanoparticles are positively charged with the nano-size, which can be induced transformation by legumain cleavage. Once administrate to the eyes, MRP@DOX has a high penetration through the ocular surface to specifically targets M2 macrophages in the fundus. Then, the mannose receptor mediates phagocytosis and intracellular highly expressed legumain induces its nanofibrous transformation, which contributes to a 44.7% DOX retention in cells at 24 h than that of the non-transformed controls (MAP@DOX: 5.1%). The nanofiber transformation provides an inhibition of exocytosis, which explains the higher retention of the delivered drug. In the mouse OIR model, MRP@DOX completely restores the physiological angiogenesis and reduces pathological neovascularization. Pathological neovascularization branches and cell nuclei that break through the inner limiting membrane are reduced by 55% and 72%, respectively, which are 25% and 20% less than those in the non-transformed controls. In addition, MRP@DOX also has good histocompatibility, which provides a possible strategy for non-invasive treatment of fundus diseases in the future.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>34991034</pmid><doi>10.1016/j.biomaterials.2021.121361</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9793-3995</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2022-02, Vol.281, p.121361-121361, Article 121361
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_2618228290
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Cell Line, Tumor
Doxorubicin - therapeutic use
Drug Carriers
Drug delivery
Drug Delivery Systems
Eyedrops
Glycopeptide
Glycopeptides
Mice
Nanoparticles
Neovascularization
Neovascularization, Pathologic - drug therapy
Ophthalmic Solutions
Permeability
Self-assembly
title Glycopeptide-nanotransforrs eyedrops with enhanced permeability and retention for preventing fundus neovascularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T21%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycopeptide-nanotransforrs%20eyedrops%20with%20enhanced%20permeability%20and%20retention%20for%20preventing%20fundus%20neovascularization&rft.jtitle=Biomaterials&rft.au=Li,%20Ke&rft.date=2022-02&rft.volume=281&rft.spage=121361&rft.epage=121361&rft.pages=121361-121361&rft.artnum=121361&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2021.121361&rft_dat=%3Cproquest_cross%3E2618228290%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618228290&rft_id=info:pmid/34991034&rft_els_id=S0142961221007171&rfr_iscdi=true