SonoTweezer: An Acoustically Powered End-Effector for Underwater Micromanipulation
Recent advances in contactless micromanipulation strategies have revolutionized prospects of robotic manipulators as next-generation tools for minimally invasive surgeries. In particular, acoustically powered phased arrays offer dexterous means of manipulation both in air and water. Inspired by thes...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2022-03, Vol.69 (3), p.988-997 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 997 |
---|---|
container_issue | 3 |
container_start_page | 988 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 69 |
creator | Mohanty, Sumit Fidder, Robbert-Jan Matos, Pedro M. Heunis, Christoff M. Kaya, Mert Blanken, Nathan Misra, Sarthak |
description | Recent advances in contactless micromanipulation strategies have revolutionized prospects of robotic manipulators as next-generation tools for minimally invasive surgeries. In particular, acoustically powered phased arrays offer dexterous means of manipulation both in air and water. Inspired by these phased arrays, we present SonoTweezer: a compact, low-power, and lightweight array of immersible ultrasonic transducers capable of trapping and manipulation of sub-mm sized agents underwater. Based on a parametric investigation with numerical pressure field simulations, we design and create a six-transducer configuration, which is small compared to other reported multi-transducer arrays (16-256 elements). Despite the small size of array, SonoTweezer can reach pressure magnitudes of 300 kPa at a low supply voltage of 25 V to the transducers, which is in the same order of absolute pressure as multi-transducer arrays. Subsequently, we exploit the compactness of our array as an end-effector tool for a robotic manipulator to demonstrate long-range actuation of sub-millimeter agents over a hundred times the agent's body length. Furthermore, a phase-modulation over its individual transducers allows our array to locally maneuver its target agents at sub-mm steps. The ability to manipulate agents underwater makes SonoTweezer suitable for clinical applications considering water's similarity to biological media, e.g., vitreous humor and blood plasma. Finally, we show trapping and manipulation of micro-agents under medical ultrasound (US) imaging modality. This application of our actuation strategy combines the usage of US waves for both imaging and micromanipulation. |
doi_str_mv | 10.1109/TUFFC.2022.3140745 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2618227847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9672197</ieee_id><sourcerecordid>2635046905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-7bdbcc07168bf625a2210d1cac72f17afd2a8cf003782204f3335693672fd0b93</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOj_-gIIUvPGm8yRpmsa7MTYVJopu1yVNT6DSNTNtGfPXG93chRfhXJznPeR9CLmkMKQU1N18MZ2OhwwYG3KagEzEARlQwUScKSEOyQCyTMQcKJyQ07b9AKBJotgxOeGJUsCFGJC3d9e4-RrxC_19NGqikXF921VG1_UmenVr9FhGk6aMJ9ai6ZyPbHiLpkS_1h366Lky3i11U636WneVa87JkdV1ixe7eUYW08l8_BjPXh6exqNZbLgSXSyLsjAGJE2zwqZMaMYolNRoI5mlUtuS6cxYAC4zxiCxnHORKp6GdQmF4mfkdnt35d1nj22XL6vWYF3rBkOHnKU0BGWWyIDe_EM_XO-b8LtAcQFJqkAEim2pUKhtPdp85aul9pucQv5jPP81nv8Yz3fGQ-h6d7ovlljuI3-KA3C1BSpE3K9VqEGV5N8O64Qa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635046905</pqid></control><display><type>article</type><title>SonoTweezer: An Acoustically Powered End-Effector for Underwater Micromanipulation</title><source>IEEE Electronic Library (IEL)</source><creator>Mohanty, Sumit ; Fidder, Robbert-Jan ; Matos, Pedro M. ; Heunis, Christoff M. ; Kaya, Mert ; Blanken, Nathan ; Misra, Sarthak</creator><creatorcontrib>Mohanty, Sumit ; Fidder, Robbert-Jan ; Matos, Pedro M. ; Heunis, Christoff M. ; Kaya, Mert ; Blanken, Nathan ; Misra, Sarthak</creatorcontrib><description>Recent advances in contactless micromanipulation strategies have revolutionized prospects of robotic manipulators as next-generation tools for minimally invasive surgeries. In particular, acoustically powered phased arrays offer dexterous means of manipulation both in air and water. Inspired by these phased arrays, we present SonoTweezer: a compact, low-power, and lightweight array of immersible ultrasonic transducers capable of trapping and manipulation of sub-mm sized agents underwater. Based on a parametric investigation with numerical pressure field simulations, we design and create a six-transducer configuration, which is small compared to other reported multi-transducer arrays (16-256 elements). Despite the small size of array, SonoTweezer can reach pressure magnitudes of 300 kPa at a low supply voltage of 25 V to the transducers, which is in the same order of absolute pressure as multi-transducer arrays. Subsequently, we exploit the compactness of our array as an end-effector tool for a robotic manipulator to demonstrate long-range actuation of sub-millimeter agents over a hundred times the agent's body length. Furthermore, a phase-modulation over its individual transducers allows our array to locally maneuver its target agents at sub-mm steps. The ability to manipulate agents underwater makes SonoTweezer suitable for clinical applications considering water's similarity to biological media, e.g., vitreous humor and blood plasma. Finally, we show trapping and manipulation of micro-agents under medical ultrasound (US) imaging modality. This application of our actuation strategy combines the usage of US waves for both imaging and micromanipulation.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2022.3140745</identifier><identifier>PMID: 34990355</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustic arrays ; Acoustic levitation ; Acoustics ; Actuation ; Arrays ; Blood plasma ; End effectors ; Equipment Design ; Frequency control ; haptics ; Manipulators ; medical robotics ; Micromanipulation ; microrobots ; Phased arrays ; Pressure ; Pressure measurement ; Robot arms ; robotic manipulator ; Transducers ; Trapping ; Ultrasonics ; Ultrasonography ; ultrasound (US) imaging ; Underwater acoustics ; Vitreous humour ; waterborne</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2022-03, Vol.69 (3), p.988-997</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-7bdbcc07168bf625a2210d1cac72f17afd2a8cf003782204f3335693672fd0b93</citedby><cites>FETCH-LOGICAL-c395t-7bdbcc07168bf625a2210d1cac72f17afd2a8cf003782204f3335693672fd0b93</cites><orcidid>0000-0002-5204-6313 ; 0000-0003-4961-0144 ; 0000-0002-7423-3611 ; 0000-0002-7123-7334 ; 0000-0002-0415-4766 ; 0000-0001-8469-6743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9672197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9672197$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34990355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohanty, Sumit</creatorcontrib><creatorcontrib>Fidder, Robbert-Jan</creatorcontrib><creatorcontrib>Matos, Pedro M.</creatorcontrib><creatorcontrib>Heunis, Christoff M.</creatorcontrib><creatorcontrib>Kaya, Mert</creatorcontrib><creatorcontrib>Blanken, Nathan</creatorcontrib><creatorcontrib>Misra, Sarthak</creatorcontrib><title>SonoTweezer: An Acoustically Powered End-Effector for Underwater Micromanipulation</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Recent advances in contactless micromanipulation strategies have revolutionized prospects of robotic manipulators as next-generation tools for minimally invasive surgeries. In particular, acoustically powered phased arrays offer dexterous means of manipulation both in air and water. Inspired by these phased arrays, we present SonoTweezer: a compact, low-power, and lightweight array of immersible ultrasonic transducers capable of trapping and manipulation of sub-mm sized agents underwater. Based on a parametric investigation with numerical pressure field simulations, we design and create a six-transducer configuration, which is small compared to other reported multi-transducer arrays (16-256 elements). Despite the small size of array, SonoTweezer can reach pressure magnitudes of 300 kPa at a low supply voltage of 25 V to the transducers, which is in the same order of absolute pressure as multi-transducer arrays. Subsequently, we exploit the compactness of our array as an end-effector tool for a robotic manipulator to demonstrate long-range actuation of sub-millimeter agents over a hundred times the agent's body length. Furthermore, a phase-modulation over its individual transducers allows our array to locally maneuver its target agents at sub-mm steps. The ability to manipulate agents underwater makes SonoTweezer suitable for clinical applications considering water's similarity to biological media, e.g., vitreous humor and blood plasma. Finally, we show trapping and manipulation of micro-agents under medical ultrasound (US) imaging modality. This application of our actuation strategy combines the usage of US waves for both imaging and micromanipulation.</description><subject>Acoustic arrays</subject><subject>Acoustic levitation</subject><subject>Acoustics</subject><subject>Actuation</subject><subject>Arrays</subject><subject>Blood plasma</subject><subject>End effectors</subject><subject>Equipment Design</subject><subject>Frequency control</subject><subject>haptics</subject><subject>Manipulators</subject><subject>medical robotics</subject><subject>Micromanipulation</subject><subject>microrobots</subject><subject>Phased arrays</subject><subject>Pressure</subject><subject>Pressure measurement</subject><subject>Robot arms</subject><subject>robotic manipulator</subject><subject>Transducers</subject><subject>Trapping</subject><subject>Ultrasonics</subject><subject>Ultrasonography</subject><subject>ultrasound (US) imaging</subject><subject>Underwater acoustics</subject><subject>Vitreous humour</subject><subject>waterborne</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkF1LwzAUhoMoOj_-gIIUvPGm8yRpmsa7MTYVJopu1yVNT6DSNTNtGfPXG93chRfhXJznPeR9CLmkMKQU1N18MZ2OhwwYG3KagEzEARlQwUScKSEOyQCyTMQcKJyQ07b9AKBJotgxOeGJUsCFGJC3d9e4-RrxC_19NGqikXF921VG1_UmenVr9FhGk6aMJ9ai6ZyPbHiLpkS_1h366Lky3i11U636WneVa87JkdV1ixe7eUYW08l8_BjPXh6exqNZbLgSXSyLsjAGJE2zwqZMaMYolNRoI5mlUtuS6cxYAC4zxiCxnHORKp6GdQmF4mfkdnt35d1nj22XL6vWYF3rBkOHnKU0BGWWyIDe_EM_XO-b8LtAcQFJqkAEim2pUKhtPdp85aul9pucQv5jPP81nv8Yz3fGQ-h6d7ovlljuI3-KA3C1BSpE3K9VqEGV5N8O64Qa</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Mohanty, Sumit</creator><creator>Fidder, Robbert-Jan</creator><creator>Matos, Pedro M.</creator><creator>Heunis, Christoff M.</creator><creator>Kaya, Mert</creator><creator>Blanken, Nathan</creator><creator>Misra, Sarthak</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5204-6313</orcidid><orcidid>https://orcid.org/0000-0003-4961-0144</orcidid><orcidid>https://orcid.org/0000-0002-7423-3611</orcidid><orcidid>https://orcid.org/0000-0002-7123-7334</orcidid><orcidid>https://orcid.org/0000-0002-0415-4766</orcidid><orcidid>https://orcid.org/0000-0001-8469-6743</orcidid></search><sort><creationdate>20220301</creationdate><title>SonoTweezer: An Acoustically Powered End-Effector for Underwater Micromanipulation</title><author>Mohanty, Sumit ; Fidder, Robbert-Jan ; Matos, Pedro M. ; Heunis, Christoff M. ; Kaya, Mert ; Blanken, Nathan ; Misra, Sarthak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-7bdbcc07168bf625a2210d1cac72f17afd2a8cf003782204f3335693672fd0b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic arrays</topic><topic>Acoustic levitation</topic><topic>Acoustics</topic><topic>Actuation</topic><topic>Arrays</topic><topic>Blood plasma</topic><topic>End effectors</topic><topic>Equipment Design</topic><topic>Frequency control</topic><topic>haptics</topic><topic>Manipulators</topic><topic>medical robotics</topic><topic>Micromanipulation</topic><topic>microrobots</topic><topic>Phased arrays</topic><topic>Pressure</topic><topic>Pressure measurement</topic><topic>Robot arms</topic><topic>robotic manipulator</topic><topic>Transducers</topic><topic>Trapping</topic><topic>Ultrasonics</topic><topic>Ultrasonography</topic><topic>ultrasound (US) imaging</topic><topic>Underwater acoustics</topic><topic>Vitreous humour</topic><topic>waterborne</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanty, Sumit</creatorcontrib><creatorcontrib>Fidder, Robbert-Jan</creatorcontrib><creatorcontrib>Matos, Pedro M.</creatorcontrib><creatorcontrib>Heunis, Christoff M.</creatorcontrib><creatorcontrib>Kaya, Mert</creatorcontrib><creatorcontrib>Blanken, Nathan</creatorcontrib><creatorcontrib>Misra, Sarthak</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohanty, Sumit</au><au>Fidder, Robbert-Jan</au><au>Matos, Pedro M.</au><au>Heunis, Christoff M.</au><au>Kaya, Mert</au><au>Blanken, Nathan</au><au>Misra, Sarthak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SonoTweezer: An Acoustically Powered End-Effector for Underwater Micromanipulation</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>69</volume><issue>3</issue><spage>988</spage><epage>997</epage><pages>988-997</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Recent advances in contactless micromanipulation strategies have revolutionized prospects of robotic manipulators as next-generation tools for minimally invasive surgeries. In particular, acoustically powered phased arrays offer dexterous means of manipulation both in air and water. Inspired by these phased arrays, we present SonoTweezer: a compact, low-power, and lightweight array of immersible ultrasonic transducers capable of trapping and manipulation of sub-mm sized agents underwater. Based on a parametric investigation with numerical pressure field simulations, we design and create a six-transducer configuration, which is small compared to other reported multi-transducer arrays (16-256 elements). Despite the small size of array, SonoTweezer can reach pressure magnitudes of 300 kPa at a low supply voltage of 25 V to the transducers, which is in the same order of absolute pressure as multi-transducer arrays. Subsequently, we exploit the compactness of our array as an end-effector tool for a robotic manipulator to demonstrate long-range actuation of sub-millimeter agents over a hundred times the agent's body length. Furthermore, a phase-modulation over its individual transducers allows our array to locally maneuver its target agents at sub-mm steps. The ability to manipulate agents underwater makes SonoTweezer suitable for clinical applications considering water's similarity to biological media, e.g., vitreous humor and blood plasma. Finally, we show trapping and manipulation of micro-agents under medical ultrasound (US) imaging modality. This application of our actuation strategy combines the usage of US waves for both imaging and micromanipulation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34990355</pmid><doi>10.1109/TUFFC.2022.3140745</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5204-6313</orcidid><orcidid>https://orcid.org/0000-0003-4961-0144</orcidid><orcidid>https://orcid.org/0000-0002-7423-3611</orcidid><orcidid>https://orcid.org/0000-0002-7123-7334</orcidid><orcidid>https://orcid.org/0000-0002-0415-4766</orcidid><orcidid>https://orcid.org/0000-0001-8469-6743</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2022-03, Vol.69 (3), p.988-997 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_2618227847 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic arrays Acoustic levitation Acoustics Actuation Arrays Blood plasma End effectors Equipment Design Frequency control haptics Manipulators medical robotics Micromanipulation microrobots Phased arrays Pressure Pressure measurement Robot arms robotic manipulator Transducers Trapping Ultrasonics Ultrasonography ultrasound (US) imaging Underwater acoustics Vitreous humour waterborne |
title | SonoTweezer: An Acoustically Powered End-Effector for Underwater Micromanipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SonoTweezer:%20An%20Acoustically%20Powered%20End-Effector%20for%20Underwater%20Micromanipulation&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Mohanty,%20Sumit&rft.date=2022-03-01&rft.volume=69&rft.issue=3&rft.spage=988&rft.epage=997&rft.pages=988-997&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2022.3140745&rft_dat=%3Cproquest_RIE%3E2635046905%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635046905&rft_id=info:pmid/34990355&rft_ieee_id=9672197&rfr_iscdi=true |