Carbon Quantum Dot Surface-Chemistry-Dependent Ag Release Governs the High Antibacterial Activity of Ag-Metal–Organic Framework Composites

Nanocomposites and hybrid materials of Ag–1,3,5-benzenetricarboxylic acid metal–organic frameworks (MOFs) with S- and N-carbon quantum dots (CQDs) were synthesized and evaluated for their antibacterial activity against representative Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied bio materials 2018-09, Vol.1 (3), p.693-707
Hauptverfasser: Travlou, Nikolina A, Algarra, Manuel, Alcoholado, Cristina, Cifuentes-Rueda, Manuel, Labella, Alejandro M, Lázaro-Martínez, Juan Manuel, Rodríguez-Castellón, Enrique, Bandosz, Teresa J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 707
container_issue 3
container_start_page 693
container_title ACS applied bio materials
container_volume 1
creator Travlou, Nikolina A
Algarra, Manuel
Alcoholado, Cristina
Cifuentes-Rueda, Manuel
Labella, Alejandro M
Lázaro-Martínez, Juan Manuel
Rodríguez-Castellón, Enrique
Bandosz, Teresa J
description Nanocomposites and hybrid materials of Ag–1,3,5-benzenetricarboxylic acid metal–organic frameworks (MOFs) with S- and N-carbon quantum dots (CQDs) were synthesized and evaluated for their antibacterial activity against representative Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacterial strains using the qualitative disk-diffusion approach and the quantitative minimum inhibitory concentration test. The composites and hybrids were found to be nontoxic to living cells. The composite formation fostered a synergistic effect that enhanced their antibacterial activity compared with those of their pristine components. Charge transfer from AgMOF to CQDs facilitated the electrostatic interactions of the composites and hybrids with the bacterial cell membranes. Enhanced bactericidal activity was linked to morphological features (a nanorod-like morphology) and specific surface chemistry. The latter affected the release of silver. Silver on the surface of the MOFs rather than silver in the bulk was found to be important. The destruction of the MOF component in the extracellular environment led to the release of silver ions, which have a high affinity to S compounds of the cell physiology. The formation of metallic silver (Ag°) and silver sulfides (Ag2S) was suggested as essential for the ability of the composites and hybrids to inhibit bacterial growth. To the best of our knowledge, this is the first study that introduces the bactericidal effect of AgMOF–CQDs composites and hybrids.
doi_str_mv 10.1021/acsabm.8b00166
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2618226146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618226146</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-d1bc6cdb607dd80cbc73e346f614d65e25ec3dd594630260f3a1b97611ee6eed3</originalsourceid><addsrcrecordid>eNp1kctqGzEUhkVISIKbbZdFyxIYV5ex7FmayRUcTNt0PehyxlY6IzmSJsW7PkB2fcM8SRXslGy6ORf4_h_O-RH6SMmYEka_SB2l6sczRQgV4gCdsslUFKJk7PDdfILOYnwghDBCOJ1Vx-iEl1Ul8nqKnmsZlHf46yBdGnp84RP-PoRWaijqNfQ2prAtLmADzoBLeL7C36ADGQFf-ycILuK0BnxjV2s8d8kqqRMEKzs818k-2bTFvs2q4g6S7F5-_1mGlXRW46sge_jlw09c-37jo00QP6CjVnYRzvZ9hH5cXd7XN8VieX1bzxeF5JykwlClhTZKkKkxM6KVnnLgpWgFLY2YAJuA5sZMqlJwwgRpuaSqmgpKAQSA4SP0eee7Cf5xgJiafKeGrpMO_BAbJuiM5ZL1IzTeoTr4GAO0zSbYXoZtQ0nzGkKzC6HZh5AFn_beg-rB_MPfXp6B8x2Qhc2DH4LLp_7P7S821ZQ3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618226146</pqid></control><display><type>article</type><title>Carbon Quantum Dot Surface-Chemistry-Dependent Ag Release Governs the High Antibacterial Activity of Ag-Metal–Organic Framework Composites</title><source>American Chemical Society Journals</source><creator>Travlou, Nikolina A ; Algarra, Manuel ; Alcoholado, Cristina ; Cifuentes-Rueda, Manuel ; Labella, Alejandro M ; Lázaro-Martínez, Juan Manuel ; Rodríguez-Castellón, Enrique ; Bandosz, Teresa J</creator><creatorcontrib>Travlou, Nikolina A ; Algarra, Manuel ; Alcoholado, Cristina ; Cifuentes-Rueda, Manuel ; Labella, Alejandro M ; Lázaro-Martínez, Juan Manuel ; Rodríguez-Castellón, Enrique ; Bandosz, Teresa J</creatorcontrib><description>Nanocomposites and hybrid materials of Ag–1,3,5-benzenetricarboxylic acid metal–organic frameworks (MOFs) with S- and N-carbon quantum dots (CQDs) were synthesized and evaluated for their antibacterial activity against representative Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacterial strains using the qualitative disk-diffusion approach and the quantitative minimum inhibitory concentration test. The composites and hybrids were found to be nontoxic to living cells. The composite formation fostered a synergistic effect that enhanced their antibacterial activity compared with those of their pristine components. Charge transfer from AgMOF to CQDs facilitated the electrostatic interactions of the composites and hybrids with the bacterial cell membranes. Enhanced bactericidal activity was linked to morphological features (a nanorod-like morphology) and specific surface chemistry. The latter affected the release of silver. Silver on the surface of the MOFs rather than silver in the bulk was found to be important. The destruction of the MOF component in the extracellular environment led to the release of silver ions, which have a high affinity to S compounds of the cell physiology. The formation of metallic silver (Ag°) and silver sulfides (Ag2S) was suggested as essential for the ability of the composites and hybrids to inhibit bacterial growth. To the best of our knowledge, this is the first study that introduces the bactericidal effect of AgMOF–CQDs composites and hybrids.</description><identifier>ISSN: 2576-6422</identifier><identifier>EISSN: 2576-6422</identifier><identifier>DOI: 10.1021/acsabm.8b00166</identifier><identifier>PMID: 34996200</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied bio materials, 2018-09, Vol.1 (3), p.693-707</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-d1bc6cdb607dd80cbc73e346f614d65e25ec3dd594630260f3a1b97611ee6eed3</citedby><cites>FETCH-LOGICAL-a330t-d1bc6cdb607dd80cbc73e346f614d65e25ec3dd594630260f3a1b97611ee6eed3</cites><orcidid>0000-0002-7189-6874 ; 0000-0003-2673-3782 ; 0000-0003-4751-1767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsabm.8b00166$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsabm.8b00166$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34996200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Travlou, Nikolina A</creatorcontrib><creatorcontrib>Algarra, Manuel</creatorcontrib><creatorcontrib>Alcoholado, Cristina</creatorcontrib><creatorcontrib>Cifuentes-Rueda, Manuel</creatorcontrib><creatorcontrib>Labella, Alejandro M</creatorcontrib><creatorcontrib>Lázaro-Martínez, Juan Manuel</creatorcontrib><creatorcontrib>Rodríguez-Castellón, Enrique</creatorcontrib><creatorcontrib>Bandosz, Teresa J</creatorcontrib><title>Carbon Quantum Dot Surface-Chemistry-Dependent Ag Release Governs the High Antibacterial Activity of Ag-Metal–Organic Framework Composites</title><title>ACS applied bio materials</title><addtitle>ACS Appl. Bio Mater</addtitle><description>Nanocomposites and hybrid materials of Ag–1,3,5-benzenetricarboxylic acid metal–organic frameworks (MOFs) with S- and N-carbon quantum dots (CQDs) were synthesized and evaluated for their antibacterial activity against representative Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacterial strains using the qualitative disk-diffusion approach and the quantitative minimum inhibitory concentration test. The composites and hybrids were found to be nontoxic to living cells. The composite formation fostered a synergistic effect that enhanced their antibacterial activity compared with those of their pristine components. Charge transfer from AgMOF to CQDs facilitated the electrostatic interactions of the composites and hybrids with the bacterial cell membranes. Enhanced bactericidal activity was linked to morphological features (a nanorod-like morphology) and specific surface chemistry. The latter affected the release of silver. Silver on the surface of the MOFs rather than silver in the bulk was found to be important. The destruction of the MOF component in the extracellular environment led to the release of silver ions, which have a high affinity to S compounds of the cell physiology. The formation of metallic silver (Ag°) and silver sulfides (Ag2S) was suggested as essential for the ability of the composites and hybrids to inhibit bacterial growth. To the best of our knowledge, this is the first study that introduces the bactericidal effect of AgMOF–CQDs composites and hybrids.</description><issn>2576-6422</issn><issn>2576-6422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kctqGzEUhkVISIKbbZdFyxIYV5ex7FmayRUcTNt0PehyxlY6IzmSJsW7PkB2fcM8SRXslGy6ORf4_h_O-RH6SMmYEka_SB2l6sczRQgV4gCdsslUFKJk7PDdfILOYnwghDBCOJ1Vx-iEl1Ul8nqKnmsZlHf46yBdGnp84RP-PoRWaijqNfQ2prAtLmADzoBLeL7C36ADGQFf-ycILuK0BnxjV2s8d8kqqRMEKzs818k-2bTFvs2q4g6S7F5-_1mGlXRW46sge_jlw09c-37jo00QP6CjVnYRzvZ9hH5cXd7XN8VieX1bzxeF5JykwlClhTZKkKkxM6KVnnLgpWgFLY2YAJuA5sZMqlJwwgRpuaSqmgpKAQSA4SP0eee7Cf5xgJiafKeGrpMO_BAbJuiM5ZL1IzTeoTr4GAO0zSbYXoZtQ0nzGkKzC6HZh5AFn_beg-rB_MPfXp6B8x2Qhc2DH4LLp_7P7S821ZQ3</recordid><startdate>20180917</startdate><enddate>20180917</enddate><creator>Travlou, Nikolina A</creator><creator>Algarra, Manuel</creator><creator>Alcoholado, Cristina</creator><creator>Cifuentes-Rueda, Manuel</creator><creator>Labella, Alejandro M</creator><creator>Lázaro-Martínez, Juan Manuel</creator><creator>Rodríguez-Castellón, Enrique</creator><creator>Bandosz, Teresa J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7189-6874</orcidid><orcidid>https://orcid.org/0000-0003-2673-3782</orcidid><orcidid>https://orcid.org/0000-0003-4751-1767</orcidid></search><sort><creationdate>20180917</creationdate><title>Carbon Quantum Dot Surface-Chemistry-Dependent Ag Release Governs the High Antibacterial Activity of Ag-Metal–Organic Framework Composites</title><author>Travlou, Nikolina A ; Algarra, Manuel ; Alcoholado, Cristina ; Cifuentes-Rueda, Manuel ; Labella, Alejandro M ; Lázaro-Martínez, Juan Manuel ; Rodríguez-Castellón, Enrique ; Bandosz, Teresa J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-d1bc6cdb607dd80cbc73e346f614d65e25ec3dd594630260f3a1b97611ee6eed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Travlou, Nikolina A</creatorcontrib><creatorcontrib>Algarra, Manuel</creatorcontrib><creatorcontrib>Alcoholado, Cristina</creatorcontrib><creatorcontrib>Cifuentes-Rueda, Manuel</creatorcontrib><creatorcontrib>Labella, Alejandro M</creatorcontrib><creatorcontrib>Lázaro-Martínez, Juan Manuel</creatorcontrib><creatorcontrib>Rodríguez-Castellón, Enrique</creatorcontrib><creatorcontrib>Bandosz, Teresa J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied bio materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Travlou, Nikolina A</au><au>Algarra, Manuel</au><au>Alcoholado, Cristina</au><au>Cifuentes-Rueda, Manuel</au><au>Labella, Alejandro M</au><au>Lázaro-Martínez, Juan Manuel</au><au>Rodríguez-Castellón, Enrique</au><au>Bandosz, Teresa J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Quantum Dot Surface-Chemistry-Dependent Ag Release Governs the High Antibacterial Activity of Ag-Metal–Organic Framework Composites</atitle><jtitle>ACS applied bio materials</jtitle><addtitle>ACS Appl. Bio Mater</addtitle><date>2018-09-17</date><risdate>2018</risdate><volume>1</volume><issue>3</issue><spage>693</spage><epage>707</epage><pages>693-707</pages><issn>2576-6422</issn><eissn>2576-6422</eissn><abstract>Nanocomposites and hybrid materials of Ag–1,3,5-benzenetricarboxylic acid metal–organic frameworks (MOFs) with S- and N-carbon quantum dots (CQDs) were synthesized and evaluated for their antibacterial activity against representative Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacterial strains using the qualitative disk-diffusion approach and the quantitative minimum inhibitory concentration test. The composites and hybrids were found to be nontoxic to living cells. The composite formation fostered a synergistic effect that enhanced their antibacterial activity compared with those of their pristine components. Charge transfer from AgMOF to CQDs facilitated the electrostatic interactions of the composites and hybrids with the bacterial cell membranes. Enhanced bactericidal activity was linked to morphological features (a nanorod-like morphology) and specific surface chemistry. The latter affected the release of silver. Silver on the surface of the MOFs rather than silver in the bulk was found to be important. The destruction of the MOF component in the extracellular environment led to the release of silver ions, which have a high affinity to S compounds of the cell physiology. The formation of metallic silver (Ag°) and silver sulfides (Ag2S) was suggested as essential for the ability of the composites and hybrids to inhibit bacterial growth. To the best of our knowledge, this is the first study that introduces the bactericidal effect of AgMOF–CQDs composites and hybrids.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34996200</pmid><doi>10.1021/acsabm.8b00166</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7189-6874</orcidid><orcidid>https://orcid.org/0000-0003-2673-3782</orcidid><orcidid>https://orcid.org/0000-0003-4751-1767</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2576-6422
ispartof ACS applied bio materials, 2018-09, Vol.1 (3), p.693-707
issn 2576-6422
2576-6422
language eng
recordid cdi_proquest_miscellaneous_2618226146
source American Chemical Society Journals
title Carbon Quantum Dot Surface-Chemistry-Dependent Ag Release Governs the High Antibacterial Activity of Ag-Metal–Organic Framework Composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Quantum%20Dot%20Surface-Chemistry-Dependent%20Ag%20Release%20Governs%20the%20High%20Antibacterial%20Activity%20of%20Ag-Metal%E2%80%93Organic%20Framework%20Composites&rft.jtitle=ACS%20applied%20bio%20materials&rft.au=Travlou,%20Nikolina%20A&rft.date=2018-09-17&rft.volume=1&rft.issue=3&rft.spage=693&rft.epage=707&rft.pages=693-707&rft.issn=2576-6422&rft.eissn=2576-6422&rft_id=info:doi/10.1021/acsabm.8b00166&rft_dat=%3Cproquest_cross%3E2618226146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618226146&rft_id=info:pmid/34996200&rfr_iscdi=true