Development of Titania-Integrated Silica Cell Walls of the Titanium-Resistant Diatom, Fistulifera solaris
We report the biological synthesis of titania that is integrated into the silica-based cell walls of a titanium-resistant diatom, Fistulifera solaris. Titania is deposited across the diatom cell walls by simply incubating F. solaris in a culture medium containing a high concentration (2 mM) of a wat...
Gespeichert in:
Veröffentlicht in: | ACS applied bio materials 2018-12, Vol.1 (6), p.2021-2029 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2029 |
---|---|
container_issue | 6 |
container_start_page | 2021 |
container_title | ACS applied bio materials |
container_volume | 1 |
creator | Maeda, Yoshiaki Niwa, Yuta Tang, Hongjie Kisailus, David Yoshino, Tomoko Tanaka, Tsuyoshi |
description | We report the biological synthesis of titania that is integrated into the silica-based cell walls of a titanium-resistant diatom, Fistulifera solaris. Titania is deposited across the diatom cell walls by simply incubating F. solaris in a culture medium containing a high concentration (2 mM) of a water-soluble organo-titanium compound, titanium(IV) bis(ammonium lactato) dihydroxide (TiBALDH) that would otherwise inhibit the growth of other diatom species. Furthermore, we genetically engineered the interfaces of the diatom cell walls with a titanium-associated peptide, which subsequently increased the Ti/Si atomic ratio by more than 50% (i.e., from 6.2 ± 0.2% to 9.7 ± 0.5%, as identified by inductively coupled plasma–atomic emission spectrometry). The titanium content on the F. solaris silica cell walls is one of the highest reported to date, and comparable to that of chemically synthesized TiO2–silica composites. Subsequent thermal annealing at 500 °C in air converted the cell wall-bound titania to nanocrystalline anatase TiO2, a highly photocatalytically active phase. We propose that incubation of the titanium-resistant F. solaris with TiBALDH as demonstrated in this study could be a promising bioprocess toward the scalable synthesis of TiO2. In addition, the genetic engineering we used to modulate the surface properties of diatom silica cell walls could be extended to synthesize controlled nanomaterials for multiple applications including bioremediation, water purification, and energy conversion/storage. |
doi_str_mv | 10.1021/acsabm.8b00520 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2618225997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618225997</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-341dfbee507674851c2bd163e69236bd618f4a6901e1d39b61e9263bd7acb9b73</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRbKm9epQcRUzdj2TTPUprtVAQtOIx7CYT3bJJ6u5G8L93S6J48TRv4PceMw-hc4JnBFNyIwsnVT2bK4xTio_QmKYZj3lC6fEfPUJT53YYY4oxI3NxikYsEYJTnoyRXsInmHZfQ-Ojtoq22stGy3jdeHiz0kMZPWujCxktwJjoVRrjDpx_h4Ht6vgJnHZB-2ippW_r62gV9s7oCqyMXGuk1e4MnVTSOJgOc4JeVnfbxUO8ebxfL243sWQM-5glpKwUQIozniXzlBRUlYQz4IIyrkpO5lUiucAESMmE4gQE5UyVmSyUUBmboMs-d2_bjw6cz2vtinC8bKDtXE5DAqWpEAd01qOFbZ2zUOV7q2tpv3KC80PDed9wPjQcDBdDdqdqKH_xnz4DcNUDwZjv2s424dX_0r4B0CGF_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618225997</pqid></control><display><type>article</type><title>Development of Titania-Integrated Silica Cell Walls of the Titanium-Resistant Diatom, Fistulifera solaris</title><source>ACS Publications</source><creator>Maeda, Yoshiaki ; Niwa, Yuta ; Tang, Hongjie ; Kisailus, David ; Yoshino, Tomoko ; Tanaka, Tsuyoshi</creator><creatorcontrib>Maeda, Yoshiaki ; Niwa, Yuta ; Tang, Hongjie ; Kisailus, David ; Yoshino, Tomoko ; Tanaka, Tsuyoshi</creatorcontrib><description>We report the biological synthesis of titania that is integrated into the silica-based cell walls of a titanium-resistant diatom, Fistulifera solaris. Titania is deposited across the diatom cell walls by simply incubating F. solaris in a culture medium containing a high concentration (2 mM) of a water-soluble organo-titanium compound, titanium(IV) bis(ammonium lactato) dihydroxide (TiBALDH) that would otherwise inhibit the growth of other diatom species. Furthermore, we genetically engineered the interfaces of the diatom cell walls with a titanium-associated peptide, which subsequently increased the Ti/Si atomic ratio by more than 50% (i.e., from 6.2 ± 0.2% to 9.7 ± 0.5%, as identified by inductively coupled plasma–atomic emission spectrometry). The titanium content on the F. solaris silica cell walls is one of the highest reported to date, and comparable to that of chemically synthesized TiO2–silica composites. Subsequent thermal annealing at 500 °C in air converted the cell wall-bound titania to nanocrystalline anatase TiO2, a highly photocatalytically active phase. We propose that incubation of the titanium-resistant F. solaris with TiBALDH as demonstrated in this study could be a promising bioprocess toward the scalable synthesis of TiO2. In addition, the genetic engineering we used to modulate the surface properties of diatom silica cell walls could be extended to synthesize controlled nanomaterials for multiple applications including bioremediation, water purification, and energy conversion/storage.</description><identifier>ISSN: 2576-6422</identifier><identifier>EISSN: 2576-6422</identifier><identifier>DOI: 10.1021/acsabm.8b00520</identifier><identifier>PMID: 34996264</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied bio materials, 2018-12, Vol.1 (6), p.2021-2029</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-341dfbee507674851c2bd163e69236bd618f4a6901e1d39b61e9263bd7acb9b73</citedby><cites>FETCH-LOGICAL-a330t-341dfbee507674851c2bd163e69236bd618f4a6901e1d39b61e9263bd7acb9b73</cites><orcidid>0000-0002-4505-2774 ; 0000-0003-2601-2256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsabm.8b00520$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsabm.8b00520$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34996264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maeda, Yoshiaki</creatorcontrib><creatorcontrib>Niwa, Yuta</creatorcontrib><creatorcontrib>Tang, Hongjie</creatorcontrib><creatorcontrib>Kisailus, David</creatorcontrib><creatorcontrib>Yoshino, Tomoko</creatorcontrib><creatorcontrib>Tanaka, Tsuyoshi</creatorcontrib><title>Development of Titania-Integrated Silica Cell Walls of the Titanium-Resistant Diatom, Fistulifera solaris</title><title>ACS applied bio materials</title><addtitle>ACS Appl. Bio Mater</addtitle><description>We report the biological synthesis of titania that is integrated into the silica-based cell walls of a titanium-resistant diatom, Fistulifera solaris. Titania is deposited across the diatom cell walls by simply incubating F. solaris in a culture medium containing a high concentration (2 mM) of a water-soluble organo-titanium compound, titanium(IV) bis(ammonium lactato) dihydroxide (TiBALDH) that would otherwise inhibit the growth of other diatom species. Furthermore, we genetically engineered the interfaces of the diatom cell walls with a titanium-associated peptide, which subsequently increased the Ti/Si atomic ratio by more than 50% (i.e., from 6.2 ± 0.2% to 9.7 ± 0.5%, as identified by inductively coupled plasma–atomic emission spectrometry). The titanium content on the F. solaris silica cell walls is one of the highest reported to date, and comparable to that of chemically synthesized TiO2–silica composites. Subsequent thermal annealing at 500 °C in air converted the cell wall-bound titania to nanocrystalline anatase TiO2, a highly photocatalytically active phase. We propose that incubation of the titanium-resistant F. solaris with TiBALDH as demonstrated in this study could be a promising bioprocess toward the scalable synthesis of TiO2. In addition, the genetic engineering we used to modulate the surface properties of diatom silica cell walls could be extended to synthesize controlled nanomaterials for multiple applications including bioremediation, water purification, and energy conversion/storage.</description><issn>2576-6422</issn><issn>2576-6422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRbKm9epQcRUzdj2TTPUprtVAQtOIx7CYT3bJJ6u5G8L93S6J48TRv4PceMw-hc4JnBFNyIwsnVT2bK4xTio_QmKYZj3lC6fEfPUJT53YYY4oxI3NxikYsEYJTnoyRXsInmHZfQ-Ojtoq22stGy3jdeHiz0kMZPWujCxktwJjoVRrjDpx_h4Ht6vgJnHZB-2ippW_r62gV9s7oCqyMXGuk1e4MnVTSOJgOc4JeVnfbxUO8ebxfL243sWQM-5glpKwUQIozniXzlBRUlYQz4IIyrkpO5lUiucAESMmE4gQE5UyVmSyUUBmboMs-d2_bjw6cz2vtinC8bKDtXE5DAqWpEAd01qOFbZ2zUOV7q2tpv3KC80PDed9wPjQcDBdDdqdqKH_xnz4DcNUDwZjv2s424dX_0r4B0CGF_A</recordid><startdate>20181217</startdate><enddate>20181217</enddate><creator>Maeda, Yoshiaki</creator><creator>Niwa, Yuta</creator><creator>Tang, Hongjie</creator><creator>Kisailus, David</creator><creator>Yoshino, Tomoko</creator><creator>Tanaka, Tsuyoshi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4505-2774</orcidid><orcidid>https://orcid.org/0000-0003-2601-2256</orcidid></search><sort><creationdate>20181217</creationdate><title>Development of Titania-Integrated Silica Cell Walls of the Titanium-Resistant Diatom, Fistulifera solaris</title><author>Maeda, Yoshiaki ; Niwa, Yuta ; Tang, Hongjie ; Kisailus, David ; Yoshino, Tomoko ; Tanaka, Tsuyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-341dfbee507674851c2bd163e69236bd618f4a6901e1d39b61e9263bd7acb9b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maeda, Yoshiaki</creatorcontrib><creatorcontrib>Niwa, Yuta</creatorcontrib><creatorcontrib>Tang, Hongjie</creatorcontrib><creatorcontrib>Kisailus, David</creatorcontrib><creatorcontrib>Yoshino, Tomoko</creatorcontrib><creatorcontrib>Tanaka, Tsuyoshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied bio materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maeda, Yoshiaki</au><au>Niwa, Yuta</au><au>Tang, Hongjie</au><au>Kisailus, David</au><au>Yoshino, Tomoko</au><au>Tanaka, Tsuyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Titania-Integrated Silica Cell Walls of the Titanium-Resistant Diatom, Fistulifera solaris</atitle><jtitle>ACS applied bio materials</jtitle><addtitle>ACS Appl. Bio Mater</addtitle><date>2018-12-17</date><risdate>2018</risdate><volume>1</volume><issue>6</issue><spage>2021</spage><epage>2029</epage><pages>2021-2029</pages><issn>2576-6422</issn><eissn>2576-6422</eissn><abstract>We report the biological synthesis of titania that is integrated into the silica-based cell walls of a titanium-resistant diatom, Fistulifera solaris. Titania is deposited across the diatom cell walls by simply incubating F. solaris in a culture medium containing a high concentration (2 mM) of a water-soluble organo-titanium compound, titanium(IV) bis(ammonium lactato) dihydroxide (TiBALDH) that would otherwise inhibit the growth of other diatom species. Furthermore, we genetically engineered the interfaces of the diatom cell walls with a titanium-associated peptide, which subsequently increased the Ti/Si atomic ratio by more than 50% (i.e., from 6.2 ± 0.2% to 9.7 ± 0.5%, as identified by inductively coupled plasma–atomic emission spectrometry). The titanium content on the F. solaris silica cell walls is one of the highest reported to date, and comparable to that of chemically synthesized TiO2–silica composites. Subsequent thermal annealing at 500 °C in air converted the cell wall-bound titania to nanocrystalline anatase TiO2, a highly photocatalytically active phase. We propose that incubation of the titanium-resistant F. solaris with TiBALDH as demonstrated in this study could be a promising bioprocess toward the scalable synthesis of TiO2. In addition, the genetic engineering we used to modulate the surface properties of diatom silica cell walls could be extended to synthesize controlled nanomaterials for multiple applications including bioremediation, water purification, and energy conversion/storage.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34996264</pmid><doi>10.1021/acsabm.8b00520</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4505-2774</orcidid><orcidid>https://orcid.org/0000-0003-2601-2256</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2576-6422 |
ispartof | ACS applied bio materials, 2018-12, Vol.1 (6), p.2021-2029 |
issn | 2576-6422 2576-6422 |
language | eng |
recordid | cdi_proquest_miscellaneous_2618225997 |
source | ACS Publications |
title | Development of Titania-Integrated Silica Cell Walls of the Titanium-Resistant Diatom, Fistulifera solaris |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Titania-Integrated%20Silica%20Cell%20Walls%20of%20the%20Titanium-Resistant%20Diatom,%20Fistulifera%20solaris&rft.jtitle=ACS%20applied%20bio%20materials&rft.au=Maeda,%20Yoshiaki&rft.date=2018-12-17&rft.volume=1&rft.issue=6&rft.spage=2021&rft.epage=2029&rft.pages=2021-2029&rft.issn=2576-6422&rft.eissn=2576-6422&rft_id=info:doi/10.1021/acsabm.8b00520&rft_dat=%3Cproquest_cross%3E2618225997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618225997&rft_id=info:pmid/34996264&rfr_iscdi=true |