Development of Titania-Integrated Silica Cell Walls of the Titanium-Resistant Diatom, Fistulifera solaris

We report the biological synthesis of titania that is integrated into the silica-based cell walls of a titanium-resistant diatom, Fistulifera solaris. Titania is deposited across the diatom cell walls by simply incubating F. solaris in a culture medium containing a high concentration (2 mM) of a wat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied bio materials 2018-12, Vol.1 (6), p.2021-2029
Hauptverfasser: Maeda, Yoshiaki, Niwa, Yuta, Tang, Hongjie, Kisailus, David, Yoshino, Tomoko, Tanaka, Tsuyoshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2029
container_issue 6
container_start_page 2021
container_title ACS applied bio materials
container_volume 1
creator Maeda, Yoshiaki
Niwa, Yuta
Tang, Hongjie
Kisailus, David
Yoshino, Tomoko
Tanaka, Tsuyoshi
description We report the biological synthesis of titania that is integrated into the silica-based cell walls of a titanium-resistant diatom, Fistulifera solaris. Titania is deposited across the diatom cell walls by simply incubating F. solaris in a culture medium containing a high concentration (2 mM) of a water-soluble organo-titanium compound, titanium­(IV) bis­(ammonium lactato) dihydroxide (TiBALDH) that would otherwise inhibit the growth of other diatom species. Furthermore, we genetically engineered the interfaces of the diatom cell walls with a titanium-associated peptide, which subsequently increased the Ti/Si atomic ratio by more than 50% (i.e., from 6.2 ± 0.2% to 9.7 ± 0.5%, as identified by inductively coupled plasma–atomic emission spectrometry). The titanium content on the F. solaris silica cell walls is one of the highest reported to date, and comparable to that of chemically synthesized TiO2–silica composites. Subsequent thermal annealing at 500 °C in air converted the cell wall-bound titania to nanocrystalline anatase TiO2, a highly photocatalytically active phase. We propose that incubation of the titanium-resistant F. solaris with TiBALDH as demonstrated in this study could be a promising bioprocess toward the scalable synthesis of TiO2. In addition, the genetic engineering we used to modulate the surface properties of diatom silica cell walls could be extended to synthesize controlled nanomaterials for multiple applications including bioremediation, water purification, and energy conversion/storage.
doi_str_mv 10.1021/acsabm.8b00520
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2618225997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618225997</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-341dfbee507674851c2bd163e69236bd618f4a6901e1d39b61e9263bd7acb9b73</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRbKm9epQcRUzdj2TTPUprtVAQtOIx7CYT3bJJ6u5G8L93S6J48TRv4PceMw-hc4JnBFNyIwsnVT2bK4xTio_QmKYZj3lC6fEfPUJT53YYY4oxI3NxikYsEYJTnoyRXsInmHZfQ-Ojtoq22stGy3jdeHiz0kMZPWujCxktwJjoVRrjDpx_h4Ht6vgJnHZB-2ippW_r62gV9s7oCqyMXGuk1e4MnVTSOJgOc4JeVnfbxUO8ebxfL243sWQM-5glpKwUQIozniXzlBRUlYQz4IIyrkpO5lUiucAESMmE4gQE5UyVmSyUUBmboMs-d2_bjw6cz2vtinC8bKDtXE5DAqWpEAd01qOFbZ2zUOV7q2tpv3KC80PDed9wPjQcDBdDdqdqKH_xnz4DcNUDwZjv2s424dX_0r4B0CGF_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618225997</pqid></control><display><type>article</type><title>Development of Titania-Integrated Silica Cell Walls of the Titanium-Resistant Diatom, Fistulifera solaris</title><source>ACS Publications</source><creator>Maeda, Yoshiaki ; Niwa, Yuta ; Tang, Hongjie ; Kisailus, David ; Yoshino, Tomoko ; Tanaka, Tsuyoshi</creator><creatorcontrib>Maeda, Yoshiaki ; Niwa, Yuta ; Tang, Hongjie ; Kisailus, David ; Yoshino, Tomoko ; Tanaka, Tsuyoshi</creatorcontrib><description>We report the biological synthesis of titania that is integrated into the silica-based cell walls of a titanium-resistant diatom, Fistulifera solaris. Titania is deposited across the diatom cell walls by simply incubating F. solaris in a culture medium containing a high concentration (2 mM) of a water-soluble organo-titanium compound, titanium­(IV) bis­(ammonium lactato) dihydroxide (TiBALDH) that would otherwise inhibit the growth of other diatom species. Furthermore, we genetically engineered the interfaces of the diatom cell walls with a titanium-associated peptide, which subsequently increased the Ti/Si atomic ratio by more than 50% (i.e., from 6.2 ± 0.2% to 9.7 ± 0.5%, as identified by inductively coupled plasma–atomic emission spectrometry). The titanium content on the F. solaris silica cell walls is one of the highest reported to date, and comparable to that of chemically synthesized TiO2–silica composites. Subsequent thermal annealing at 500 °C in air converted the cell wall-bound titania to nanocrystalline anatase TiO2, a highly photocatalytically active phase. We propose that incubation of the titanium-resistant F. solaris with TiBALDH as demonstrated in this study could be a promising bioprocess toward the scalable synthesis of TiO2. In addition, the genetic engineering we used to modulate the surface properties of diatom silica cell walls could be extended to synthesize controlled nanomaterials for multiple applications including bioremediation, water purification, and energy conversion/storage.</description><identifier>ISSN: 2576-6422</identifier><identifier>EISSN: 2576-6422</identifier><identifier>DOI: 10.1021/acsabm.8b00520</identifier><identifier>PMID: 34996264</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied bio materials, 2018-12, Vol.1 (6), p.2021-2029</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-341dfbee507674851c2bd163e69236bd618f4a6901e1d39b61e9263bd7acb9b73</citedby><cites>FETCH-LOGICAL-a330t-341dfbee507674851c2bd163e69236bd618f4a6901e1d39b61e9263bd7acb9b73</cites><orcidid>0000-0002-4505-2774 ; 0000-0003-2601-2256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsabm.8b00520$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsabm.8b00520$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34996264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maeda, Yoshiaki</creatorcontrib><creatorcontrib>Niwa, Yuta</creatorcontrib><creatorcontrib>Tang, Hongjie</creatorcontrib><creatorcontrib>Kisailus, David</creatorcontrib><creatorcontrib>Yoshino, Tomoko</creatorcontrib><creatorcontrib>Tanaka, Tsuyoshi</creatorcontrib><title>Development of Titania-Integrated Silica Cell Walls of the Titanium-Resistant Diatom, Fistulifera solaris</title><title>ACS applied bio materials</title><addtitle>ACS Appl. Bio Mater</addtitle><description>We report the biological synthesis of titania that is integrated into the silica-based cell walls of a titanium-resistant diatom, Fistulifera solaris. Titania is deposited across the diatom cell walls by simply incubating F. solaris in a culture medium containing a high concentration (2 mM) of a water-soluble organo-titanium compound, titanium­(IV) bis­(ammonium lactato) dihydroxide (TiBALDH) that would otherwise inhibit the growth of other diatom species. Furthermore, we genetically engineered the interfaces of the diatom cell walls with a titanium-associated peptide, which subsequently increased the Ti/Si atomic ratio by more than 50% (i.e., from 6.2 ± 0.2% to 9.7 ± 0.5%, as identified by inductively coupled plasma–atomic emission spectrometry). The titanium content on the F. solaris silica cell walls is one of the highest reported to date, and comparable to that of chemically synthesized TiO2–silica composites. Subsequent thermal annealing at 500 °C in air converted the cell wall-bound titania to nanocrystalline anatase TiO2, a highly photocatalytically active phase. We propose that incubation of the titanium-resistant F. solaris with TiBALDH as demonstrated in this study could be a promising bioprocess toward the scalable synthesis of TiO2. In addition, the genetic engineering we used to modulate the surface properties of diatom silica cell walls could be extended to synthesize controlled nanomaterials for multiple applications including bioremediation, water purification, and energy conversion/storage.</description><issn>2576-6422</issn><issn>2576-6422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRbKm9epQcRUzdj2TTPUprtVAQtOIx7CYT3bJJ6u5G8L93S6J48TRv4PceMw-hc4JnBFNyIwsnVT2bK4xTio_QmKYZj3lC6fEfPUJT53YYY4oxI3NxikYsEYJTnoyRXsInmHZfQ-Ojtoq22stGy3jdeHiz0kMZPWujCxktwJjoVRrjDpx_h4Ht6vgJnHZB-2ippW_r62gV9s7oCqyMXGuk1e4MnVTSOJgOc4JeVnfbxUO8ebxfL243sWQM-5glpKwUQIozniXzlBRUlYQz4IIyrkpO5lUiucAESMmE4gQE5UyVmSyUUBmboMs-d2_bjw6cz2vtinC8bKDtXE5DAqWpEAd01qOFbZ2zUOV7q2tpv3KC80PDed9wPjQcDBdDdqdqKH_xnz4DcNUDwZjv2s424dX_0r4B0CGF_A</recordid><startdate>20181217</startdate><enddate>20181217</enddate><creator>Maeda, Yoshiaki</creator><creator>Niwa, Yuta</creator><creator>Tang, Hongjie</creator><creator>Kisailus, David</creator><creator>Yoshino, Tomoko</creator><creator>Tanaka, Tsuyoshi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4505-2774</orcidid><orcidid>https://orcid.org/0000-0003-2601-2256</orcidid></search><sort><creationdate>20181217</creationdate><title>Development of Titania-Integrated Silica Cell Walls of the Titanium-Resistant Diatom, Fistulifera solaris</title><author>Maeda, Yoshiaki ; Niwa, Yuta ; Tang, Hongjie ; Kisailus, David ; Yoshino, Tomoko ; Tanaka, Tsuyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-341dfbee507674851c2bd163e69236bd618f4a6901e1d39b61e9263bd7acb9b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maeda, Yoshiaki</creatorcontrib><creatorcontrib>Niwa, Yuta</creatorcontrib><creatorcontrib>Tang, Hongjie</creatorcontrib><creatorcontrib>Kisailus, David</creatorcontrib><creatorcontrib>Yoshino, Tomoko</creatorcontrib><creatorcontrib>Tanaka, Tsuyoshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied bio materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maeda, Yoshiaki</au><au>Niwa, Yuta</au><au>Tang, Hongjie</au><au>Kisailus, David</au><au>Yoshino, Tomoko</au><au>Tanaka, Tsuyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Titania-Integrated Silica Cell Walls of the Titanium-Resistant Diatom, Fistulifera solaris</atitle><jtitle>ACS applied bio materials</jtitle><addtitle>ACS Appl. Bio Mater</addtitle><date>2018-12-17</date><risdate>2018</risdate><volume>1</volume><issue>6</issue><spage>2021</spage><epage>2029</epage><pages>2021-2029</pages><issn>2576-6422</issn><eissn>2576-6422</eissn><abstract>We report the biological synthesis of titania that is integrated into the silica-based cell walls of a titanium-resistant diatom, Fistulifera solaris. Titania is deposited across the diatom cell walls by simply incubating F. solaris in a culture medium containing a high concentration (2 mM) of a water-soluble organo-titanium compound, titanium­(IV) bis­(ammonium lactato) dihydroxide (TiBALDH) that would otherwise inhibit the growth of other diatom species. Furthermore, we genetically engineered the interfaces of the diatom cell walls with a titanium-associated peptide, which subsequently increased the Ti/Si atomic ratio by more than 50% (i.e., from 6.2 ± 0.2% to 9.7 ± 0.5%, as identified by inductively coupled plasma–atomic emission spectrometry). The titanium content on the F. solaris silica cell walls is one of the highest reported to date, and comparable to that of chemically synthesized TiO2–silica composites. Subsequent thermal annealing at 500 °C in air converted the cell wall-bound titania to nanocrystalline anatase TiO2, a highly photocatalytically active phase. We propose that incubation of the titanium-resistant F. solaris with TiBALDH as demonstrated in this study could be a promising bioprocess toward the scalable synthesis of TiO2. In addition, the genetic engineering we used to modulate the surface properties of diatom silica cell walls could be extended to synthesize controlled nanomaterials for multiple applications including bioremediation, water purification, and energy conversion/storage.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34996264</pmid><doi>10.1021/acsabm.8b00520</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4505-2774</orcidid><orcidid>https://orcid.org/0000-0003-2601-2256</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2576-6422
ispartof ACS applied bio materials, 2018-12, Vol.1 (6), p.2021-2029
issn 2576-6422
2576-6422
language eng
recordid cdi_proquest_miscellaneous_2618225997
source ACS Publications
title Development of Titania-Integrated Silica Cell Walls of the Titanium-Resistant Diatom, Fistulifera solaris
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Titania-Integrated%20Silica%20Cell%20Walls%20of%20the%20Titanium-Resistant%20Diatom,%20Fistulifera%20solaris&rft.jtitle=ACS%20applied%20bio%20materials&rft.au=Maeda,%20Yoshiaki&rft.date=2018-12-17&rft.volume=1&rft.issue=6&rft.spage=2021&rft.epage=2029&rft.pages=2021-2029&rft.issn=2576-6422&rft.eissn=2576-6422&rft_id=info:doi/10.1021/acsabm.8b00520&rft_dat=%3Cproquest_cross%3E2618225997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618225997&rft_id=info:pmid/34996264&rfr_iscdi=true