An algebraic formulation of the aggregative closure query
The aggregative closure problem, a transitive closure problem with aggregations on transitive paths, is formally defined by database terms. Its definition in our paper holds only on the subset conditions of path algebra, thereby it is more general than other definitions in previous works. For the co...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 1996-10, Vol.166 (1), p.49-62 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Theoretical computer science |
container_volume | 166 |
creator | Park, Uchang |
description | The
aggregative closure problem, a transitive closure problem with aggregations on transitive paths, is formally defined by database terms. Its definition in our paper holds only on the subset conditions of path algebra, thereby it is more general than other definitions in previous works. For the completion of the definition, we suggest conditions for the existence of the fixpoint and classified the conditions as the properties of the aggregate operators and the problem domain. So we can verify the existence of the fixpoint by the suggested conditions. The naive algorithm is proposed as a computational semantics for the aggregative closure problem. This study also proves that for an aggregative closure problem the semi-naive algorithm is computationally equivalent to the naive algorithm when the aggregate product operator is distributive over aggregate sum operator. |
doi_str_mv | 10.1016/0304-3975(95)00081-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26175127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>030439759500081X</els_id><sourcerecordid>26175127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-fb1821d98d1e2420d50a4f4b1f92e69404bf709c07fd1ebcf53d2171c88aa5e83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw89iR6qSZo0yUVYFr9gwYvC3kKaTmqk26xJu7D_3tYVj54Ghud9h3kQuiT4lmBS3uECs7xQgl8rfoMxliRfH6EZkULllCp2jGZ_yCk6S-lzhDAX5QypRZeZtoEqGm8zF-JmaE3vQ5cFl_UfkJmmidCMqx1ktg1piJB9DRD35-jEmTbBxe-co_fHh7flc756fXpZLla5pZL1uauIpKRWsiZAGcU1x4Y5VhGnKJSKYVY5gZXFwo1EZR0vakoEsVIaw0EWc3R16N3GMB5Ovd74ZKFtTQdhSJqWRHBCxQiyA2hjSCmC09voNybuNcF68qQnCXqSoBXXP570eozdH2IwPrHzEHWyHjoLtY9ge10H_3_BNyhCbxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26175127</pqid></control><display><type>article</type><title>An algebraic formulation of the aggregative closure query</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Park, Uchang</creator><creatorcontrib>Park, Uchang</creatorcontrib><description>The
aggregative closure problem, a transitive closure problem with aggregations on transitive paths, is formally defined by database terms. Its definition in our paper holds only on the subset conditions of path algebra, thereby it is more general than other definitions in previous works. For the completion of the definition, we suggest conditions for the existence of the fixpoint and classified the conditions as the properties of the aggregate operators and the problem domain. So we can verify the existence of the fixpoint by the suggested conditions. The naive algorithm is proposed as a computational semantics for the aggregative closure problem. This study also proves that for an aggregative closure problem the semi-naive algorithm is computationally equivalent to the naive algorithm when the aggregate product operator is distributive over aggregate sum operator.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/0304-3975(95)00081-X</identifier><language>eng</language><publisher>Elsevier B.V</publisher><ispartof>Theoretical computer science, 1996-10, Vol.166 (1), p.49-62</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c284t-fb1821d98d1e2420d50a4f4b1f92e69404bf709c07fd1ebcf53d2171c88aa5e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/030439759500081X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Park, Uchang</creatorcontrib><title>An algebraic formulation of the aggregative closure query</title><title>Theoretical computer science</title><description>The
aggregative closure problem, a transitive closure problem with aggregations on transitive paths, is formally defined by database terms. Its definition in our paper holds only on the subset conditions of path algebra, thereby it is more general than other definitions in previous works. For the completion of the definition, we suggest conditions for the existence of the fixpoint and classified the conditions as the properties of the aggregate operators and the problem domain. So we can verify the existence of the fixpoint by the suggested conditions. The naive algorithm is proposed as a computational semantics for the aggregative closure problem. This study also proves that for an aggregative closure problem the semi-naive algorithm is computationally equivalent to the naive algorithm when the aggregate product operator is distributive over aggregate sum operator.</description><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw89iR6qSZo0yUVYFr9gwYvC3kKaTmqk26xJu7D_3tYVj54Ghud9h3kQuiT4lmBS3uECs7xQgl8rfoMxliRfH6EZkULllCp2jGZ_yCk6S-lzhDAX5QypRZeZtoEqGm8zF-JmaE3vQ5cFl_UfkJmmidCMqx1ktg1piJB9DRD35-jEmTbBxe-co_fHh7flc756fXpZLla5pZL1uauIpKRWsiZAGcU1x4Y5VhGnKJSKYVY5gZXFwo1EZR0vakoEsVIaw0EWc3R16N3GMB5Ovd74ZKFtTQdhSJqWRHBCxQiyA2hjSCmC09voNybuNcF68qQnCXqSoBXXP570eozdH2IwPrHzEHWyHjoLtY9ge10H_3_BNyhCbxM</recordid><startdate>19961020</startdate><enddate>19961020</enddate><creator>Park, Uchang</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19961020</creationdate><title>An algebraic formulation of the aggregative closure query</title><author>Park, Uchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-fb1821d98d1e2420d50a4f4b1f92e69404bf709c07fd1ebcf53d2171c88aa5e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Uchang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Uchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An algebraic formulation of the aggregative closure query</atitle><jtitle>Theoretical computer science</jtitle><date>1996-10-20</date><risdate>1996</risdate><volume>166</volume><issue>1</issue><spage>49</spage><epage>62</epage><pages>49-62</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>The
aggregative closure problem, a transitive closure problem with aggregations on transitive paths, is formally defined by database terms. Its definition in our paper holds only on the subset conditions of path algebra, thereby it is more general than other definitions in previous works. For the completion of the definition, we suggest conditions for the existence of the fixpoint and classified the conditions as the properties of the aggregate operators and the problem domain. So we can verify the existence of the fixpoint by the suggested conditions. The naive algorithm is proposed as a computational semantics for the aggregative closure problem. This study also proves that for an aggregative closure problem the semi-naive algorithm is computationally equivalent to the naive algorithm when the aggregate product operator is distributive over aggregate sum operator.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0304-3975(95)00081-X</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 1996-10, Vol.166 (1), p.49-62 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_proquest_miscellaneous_26175127 |
source | Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library |
title | An algebraic formulation of the aggregative closure query |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20algebraic%20formulation%20of%20the%20aggregative%20closure%20query&rft.jtitle=Theoretical%20computer%20science&rft.au=Park,%20Uchang&rft.date=1996-10-20&rft.volume=166&rft.issue=1&rft.spage=49&rft.epage=62&rft.pages=49-62&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/0304-3975(95)00081-X&rft_dat=%3Cproquest_cross%3E26175127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26175127&rft_id=info:pmid/&rft_els_id=030439759500081X&rfr_iscdi=true |