An algebraic formulation of the aggregative closure query

The aggregative closure problem, a transitive closure problem with aggregations on transitive paths, is formally defined by database terms. Its definition in our paper holds only on the subset conditions of path algebra, thereby it is more general than other definitions in previous works. For the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 1996-10, Vol.166 (1), p.49-62
1. Verfasser: Park, Uchang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 1
container_start_page 49
container_title Theoretical computer science
container_volume 166
creator Park, Uchang
description The aggregative closure problem, a transitive closure problem with aggregations on transitive paths, is formally defined by database terms. Its definition in our paper holds only on the subset conditions of path algebra, thereby it is more general than other definitions in previous works. For the completion of the definition, we suggest conditions for the existence of the fixpoint and classified the conditions as the properties of the aggregate operators and the problem domain. So we can verify the existence of the fixpoint by the suggested conditions. The naive algorithm is proposed as a computational semantics for the aggregative closure problem. This study also proves that for an aggregative closure problem the semi-naive algorithm is computationally equivalent to the naive algorithm when the aggregate product operator is distributive over aggregate sum operator.
doi_str_mv 10.1016/0304-3975(95)00081-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26175127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>030439759500081X</els_id><sourcerecordid>26175127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-fb1821d98d1e2420d50a4f4b1f92e69404bf709c07fd1ebcf53d2171c88aa5e83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw89iR6qSZo0yUVYFr9gwYvC3kKaTmqk26xJu7D_3tYVj54Ghud9h3kQuiT4lmBS3uECs7xQgl8rfoMxliRfH6EZkULllCp2jGZ_yCk6S-lzhDAX5QypRZeZtoEqGm8zF-JmaE3vQ5cFl_UfkJmmidCMqx1ktg1piJB9DRD35-jEmTbBxe-co_fHh7flc756fXpZLla5pZL1uauIpKRWsiZAGcU1x4Y5VhGnKJSKYVY5gZXFwo1EZR0vakoEsVIaw0EWc3R16N3GMB5Ovd74ZKFtTQdhSJqWRHBCxQiyA2hjSCmC09voNybuNcF68qQnCXqSoBXXP570eozdH2IwPrHzEHWyHjoLtY9ge10H_3_BNyhCbxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26175127</pqid></control><display><type>article</type><title>An algebraic formulation of the aggregative closure query</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Park, Uchang</creator><creatorcontrib>Park, Uchang</creatorcontrib><description>The aggregative closure problem, a transitive closure problem with aggregations on transitive paths, is formally defined by database terms. Its definition in our paper holds only on the subset conditions of path algebra, thereby it is more general than other definitions in previous works. For the completion of the definition, we suggest conditions for the existence of the fixpoint and classified the conditions as the properties of the aggregate operators and the problem domain. So we can verify the existence of the fixpoint by the suggested conditions. The naive algorithm is proposed as a computational semantics for the aggregative closure problem. This study also proves that for an aggregative closure problem the semi-naive algorithm is computationally equivalent to the naive algorithm when the aggregate product operator is distributive over aggregate sum operator.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/0304-3975(95)00081-X</identifier><language>eng</language><publisher>Elsevier B.V</publisher><ispartof>Theoretical computer science, 1996-10, Vol.166 (1), p.49-62</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c284t-fb1821d98d1e2420d50a4f4b1f92e69404bf709c07fd1ebcf53d2171c88aa5e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/030439759500081X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Park, Uchang</creatorcontrib><title>An algebraic formulation of the aggregative closure query</title><title>Theoretical computer science</title><description>The aggregative closure problem, a transitive closure problem with aggregations on transitive paths, is formally defined by database terms. Its definition in our paper holds only on the subset conditions of path algebra, thereby it is more general than other definitions in previous works. For the completion of the definition, we suggest conditions for the existence of the fixpoint and classified the conditions as the properties of the aggregate operators and the problem domain. So we can verify the existence of the fixpoint by the suggested conditions. The naive algorithm is proposed as a computational semantics for the aggregative closure problem. This study also proves that for an aggregative closure problem the semi-naive algorithm is computationally equivalent to the naive algorithm when the aggregate product operator is distributive over aggregate sum operator.</description><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw89iR6qSZo0yUVYFr9gwYvC3kKaTmqk26xJu7D_3tYVj54Ghud9h3kQuiT4lmBS3uECs7xQgl8rfoMxliRfH6EZkULllCp2jGZ_yCk6S-lzhDAX5QypRZeZtoEqGm8zF-JmaE3vQ5cFl_UfkJmmidCMqx1ktg1piJB9DRD35-jEmTbBxe-co_fHh7flc756fXpZLla5pZL1uauIpKRWsiZAGcU1x4Y5VhGnKJSKYVY5gZXFwo1EZR0vakoEsVIaw0EWc3R16N3GMB5Ovd74ZKFtTQdhSJqWRHBCxQiyA2hjSCmC09voNybuNcF68qQnCXqSoBXXP570eozdH2IwPrHzEHWyHjoLtY9ge10H_3_BNyhCbxM</recordid><startdate>19961020</startdate><enddate>19961020</enddate><creator>Park, Uchang</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19961020</creationdate><title>An algebraic formulation of the aggregative closure query</title><author>Park, Uchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-fb1821d98d1e2420d50a4f4b1f92e69404bf709c07fd1ebcf53d2171c88aa5e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Uchang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Uchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An algebraic formulation of the aggregative closure query</atitle><jtitle>Theoretical computer science</jtitle><date>1996-10-20</date><risdate>1996</risdate><volume>166</volume><issue>1</issue><spage>49</spage><epage>62</epage><pages>49-62</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>The aggregative closure problem, a transitive closure problem with aggregations on transitive paths, is formally defined by database terms. Its definition in our paper holds only on the subset conditions of path algebra, thereby it is more general than other definitions in previous works. For the completion of the definition, we suggest conditions for the existence of the fixpoint and classified the conditions as the properties of the aggregate operators and the problem domain. So we can verify the existence of the fixpoint by the suggested conditions. The naive algorithm is proposed as a computational semantics for the aggregative closure problem. This study also proves that for an aggregative closure problem the semi-naive algorithm is computationally equivalent to the naive algorithm when the aggregate product operator is distributive over aggregate sum operator.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0304-3975(95)00081-X</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 1996-10, Vol.166 (1), p.49-62
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_26175127
source Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library
title An algebraic formulation of the aggregative closure query
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20algebraic%20formulation%20of%20the%20aggregative%20closure%20query&rft.jtitle=Theoretical%20computer%20science&rft.au=Park,%20Uchang&rft.date=1996-10-20&rft.volume=166&rft.issue=1&rft.spage=49&rft.epage=62&rft.pages=49-62&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/0304-3975(95)00081-X&rft_dat=%3Cproquest_cross%3E26175127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26175127&rft_id=info:pmid/&rft_els_id=030439759500081X&rfr_iscdi=true