Kinetics of Halogenated Organic Compound Degradation by Iron Metal

A combination of new and previously reported data on the kinetics of dehalogenation by zero-valent iron (Fe0) has been subjected to an analysis of factors effecting contaminant degradation rates. First-order rate constants (k obs) from both batch and column studies vary widely and without meaningful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 1996-08, Vol.30 (8), p.2634-2640
Hauptverfasser: Johnson, Timothy L, Scherer, Michelle M, Tratnyek, Paul G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2640
container_issue 8
container_start_page 2634
container_title Environmental science & technology
container_volume 30
creator Johnson, Timothy L
Scherer, Michelle M
Tratnyek, Paul G
description A combination of new and previously reported data on the kinetics of dehalogenation by zero-valent iron (Fe0) has been subjected to an analysis of factors effecting contaminant degradation rates. First-order rate constants (k obs) from both batch and column studies vary widely and without meaningful correlation. However, normalization of these data to iron surface area concentration yields a specific rate constant (k SA) that varies by only 1 order of magnitude for individual halocarbons. Correlation analysis using k SA reveals that dechlorination is generally more rapid at saturated carbon centers than unsaturated carbons and that high degrees of halogenation favor rapid reduction. However, new data and additional analysis will be necessary to obtain reliable quantitative structure−activity relationships. Further generalization of our kinetic model has been obtained by accounting for the concentration and saturation of reactive surface sites, but k SA is still the most appropriate starting point for design calculations. Representative values of k SA have been provided for the common chlorinated solvents.
doi_str_mv 10.1021/es9600901
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26173311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>254390</sourcerecordid><originalsourceid>FETCH-LOGICAL-a515t-e2a3eb3b5e13536359f317a5cb3301d2d49b873ea09e05cb9023947c9d8569083</originalsourceid><addsrcrecordid>eNqFkE9r3DAQxUVpodttDv0GprSBHJzOeFaydWw2f0lCAkkgNzGW5cWp19pIXki-fRQ2bCE99DQw85t5b54Q3xD2EQr85aJWABrwg5igLCCXlcSPYgKAlGtS95_FlxgfAKAgqCbi4Lwb3NjZmPk2O-XeL9zAo2uyq7DgobPZ3C9Xfj002aFbBG547PyQ1c_ZWUj10o3cfxWfWu6j23mrU3F3fHQ7P80vrk7O5r8vcpYox9wVTK6mWjokSYqkbglLlrYmAmyKZqbrqiTHoB2krk4O9ay0uqmk0lDRVOxu7q6Cf1y7OJplF63rex6cX0dTKCyJEP8LoqwQIGlNxfd34INfhyE9YVI6mPQLmaC9DWSDjzG41qxCt-TwbBDMa-Zmm3lif7wd5Gi5bwMPtovbBcIKsZglLN9gXRzd03bM4Y9RJZXS3F7fmHt1DOfq-sCoxP_c8GzjX4v_yr8AF4KYGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230123925</pqid></control><display><type>article</type><title>Kinetics of Halogenated Organic Compound Degradation by Iron Metal</title><source>ACS Publications</source><creator>Johnson, Timothy L ; Scherer, Michelle M ; Tratnyek, Paul G</creator><creatorcontrib>Johnson, Timothy L ; Scherer, Michelle M ; Tratnyek, Paul G</creatorcontrib><description>A combination of new and previously reported data on the kinetics of dehalogenation by zero-valent iron (Fe0) has been subjected to an analysis of factors effecting contaminant degradation rates. First-order rate constants (k obs) from both batch and column studies vary widely and without meaningful correlation. However, normalization of these data to iron surface area concentration yields a specific rate constant (k SA) that varies by only 1 order of magnitude for individual halocarbons. Correlation analysis using k SA reveals that dechlorination is generally more rapid at saturated carbon centers than unsaturated carbons and that high degrees of halogenation favor rapid reduction. However, new data and additional analysis will be necessary to obtain reliable quantitative structure−activity relationships. Further generalization of our kinetic model has been obtained by accounting for the concentration and saturation of reactive surface sites, but k SA is still the most appropriate starting point for design calculations. Representative values of k SA have been provided for the common chlorinated solvents.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es9600901</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Accounting ; Applied sciences ; Biological and physicochemical phenomena ; Carbon ; Chlorination ; Columns (structural) ; Contaminants ; Correlation ; Correlation analysis ; Dechlorination ; Degradation ; Design engineering ; Environment ; Environmental engineering ; Exact sciences and technology ; Halocarbons ; Halogenation ; Iron ; Kinetics ; Mathematical models ; Natural water pollution ; Organic chemistry ; Organic compounds ; Pollution ; Q1 ; Solvents ; Surface area ; Water treatment and pollution</subject><ispartof>Environmental science &amp; technology, 1996-08, Vol.30 (8), p.2634-2640</ispartof><rights>Copyright © 1996 American Chemical Society</rights><rights>1996 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a515t-e2a3eb3b5e13536359f317a5cb3301d2d49b873ea09e05cb9023947c9d8569083</citedby><cites>FETCH-LOGICAL-a515t-e2a3eb3b5e13536359f317a5cb3301d2d49b873ea09e05cb9023947c9d8569083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es9600901$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es9600901$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3181124$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Timothy L</creatorcontrib><creatorcontrib>Scherer, Michelle M</creatorcontrib><creatorcontrib>Tratnyek, Paul G</creatorcontrib><title>Kinetics of Halogenated Organic Compound Degradation by Iron Metal</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>A combination of new and previously reported data on the kinetics of dehalogenation by zero-valent iron (Fe0) has been subjected to an analysis of factors effecting contaminant degradation rates. First-order rate constants (k obs) from both batch and column studies vary widely and without meaningful correlation. However, normalization of these data to iron surface area concentration yields a specific rate constant (k SA) that varies by only 1 order of magnitude for individual halocarbons. Correlation analysis using k SA reveals that dechlorination is generally more rapid at saturated carbon centers than unsaturated carbons and that high degrees of halogenation favor rapid reduction. However, new data and additional analysis will be necessary to obtain reliable quantitative structure−activity relationships. Further generalization of our kinetic model has been obtained by accounting for the concentration and saturation of reactive surface sites, but k SA is still the most appropriate starting point for design calculations. Representative values of k SA have been provided for the common chlorinated solvents.</description><subject>Accounting</subject><subject>Applied sciences</subject><subject>Biological and physicochemical phenomena</subject><subject>Carbon</subject><subject>Chlorination</subject><subject>Columns (structural)</subject><subject>Contaminants</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Dechlorination</subject><subject>Degradation</subject><subject>Design engineering</subject><subject>Environment</subject><subject>Environmental engineering</subject><subject>Exact sciences and technology</subject><subject>Halocarbons</subject><subject>Halogenation</subject><subject>Iron</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Natural water pollution</subject><subject>Organic chemistry</subject><subject>Organic compounds</subject><subject>Pollution</subject><subject>Q1</subject><subject>Solvents</subject><subject>Surface area</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkE9r3DAQxUVpodttDv0GprSBHJzOeFaydWw2f0lCAkkgNzGW5cWp19pIXki-fRQ2bCE99DQw85t5b54Q3xD2EQr85aJWABrwg5igLCCXlcSPYgKAlGtS95_FlxgfAKAgqCbi4Lwb3NjZmPk2O-XeL9zAo2uyq7DgobPZ3C9Xfj002aFbBG547PyQ1c_ZWUj10o3cfxWfWu6j23mrU3F3fHQ7P80vrk7O5r8vcpYox9wVTK6mWjokSYqkbglLlrYmAmyKZqbrqiTHoB2krk4O9ay0uqmk0lDRVOxu7q6Cf1y7OJplF63rex6cX0dTKCyJEP8LoqwQIGlNxfd34INfhyE9YVI6mPQLmaC9DWSDjzG41qxCt-TwbBDMa-Zmm3lif7wd5Gi5bwMPtovbBcIKsZglLN9gXRzd03bM4Y9RJZXS3F7fmHt1DOfq-sCoxP_c8GzjX4v_yr8AF4KYGg</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Johnson, Timothy L</creator><creator>Scherer, Michelle M</creator><creator>Tratnyek, Paul G</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7SU</scope><scope>KR7</scope></search><sort><creationdate>19960801</creationdate><title>Kinetics of Halogenated Organic Compound Degradation by Iron Metal</title><author>Johnson, Timothy L ; Scherer, Michelle M ; Tratnyek, Paul G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a515t-e2a3eb3b5e13536359f317a5cb3301d2d49b873ea09e05cb9023947c9d8569083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Accounting</topic><topic>Applied sciences</topic><topic>Biological and physicochemical phenomena</topic><topic>Carbon</topic><topic>Chlorination</topic><topic>Columns (structural)</topic><topic>Contaminants</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Dechlorination</topic><topic>Degradation</topic><topic>Design engineering</topic><topic>Environment</topic><topic>Environmental engineering</topic><topic>Exact sciences and technology</topic><topic>Halocarbons</topic><topic>Halogenation</topic><topic>Iron</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Natural water pollution</topic><topic>Organic chemistry</topic><topic>Organic compounds</topic><topic>Pollution</topic><topic>Q1</topic><topic>Solvents</topic><topic>Surface area</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Timothy L</creatorcontrib><creatorcontrib>Scherer, Michelle M</creatorcontrib><creatorcontrib>Tratnyek, Paul G</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Timothy L</au><au>Scherer, Michelle M</au><au>Tratnyek, Paul G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of Halogenated Organic Compound Degradation by Iron Metal</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>1996-08-01</date><risdate>1996</risdate><volume>30</volume><issue>8</issue><spage>2634</spage><epage>2640</epage><pages>2634-2640</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>A combination of new and previously reported data on the kinetics of dehalogenation by zero-valent iron (Fe0) has been subjected to an analysis of factors effecting contaminant degradation rates. First-order rate constants (k obs) from both batch and column studies vary widely and without meaningful correlation. However, normalization of these data to iron surface area concentration yields a specific rate constant (k SA) that varies by only 1 order of magnitude for individual halocarbons. Correlation analysis using k SA reveals that dechlorination is generally more rapid at saturated carbon centers than unsaturated carbons and that high degrees of halogenation favor rapid reduction. However, new data and additional analysis will be necessary to obtain reliable quantitative structure−activity relationships. Further generalization of our kinetic model has been obtained by accounting for the concentration and saturation of reactive surface sites, but k SA is still the most appropriate starting point for design calculations. Representative values of k SA have been provided for the common chlorinated solvents.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/es9600901</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 1996-08, Vol.30 (8), p.2634-2640
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_26173311
source ACS Publications
subjects Accounting
Applied sciences
Biological and physicochemical phenomena
Carbon
Chlorination
Columns (structural)
Contaminants
Correlation
Correlation analysis
Dechlorination
Degradation
Design engineering
Environment
Environmental engineering
Exact sciences and technology
Halocarbons
Halogenation
Iron
Kinetics
Mathematical models
Natural water pollution
Organic chemistry
Organic compounds
Pollution
Q1
Solvents
Surface area
Water treatment and pollution
title Kinetics of Halogenated Organic Compound Degradation by Iron Metal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20Halogenated%20Organic%20Compound%20Degradation%20by%20Iron%20Metal&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Johnson,%20Timothy%20L&rft.date=1996-08-01&rft.volume=30&rft.issue=8&rft.spage=2634&rft.epage=2640&rft.pages=2634-2640&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es9600901&rft_dat=%3Cproquest_cross%3E254390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230123925&rft_id=info:pmid/&rfr_iscdi=true