Dual-mode detection of dopamine based on 0D/2D/2D CuInS2/ZnS quantum dot–black phosphorous nanosheet–TiO2 nanosheet nanocomposites

In this work, we designed new dual-mode “turn-on” electrochemical (EC) and photoelectrochemical (PEC) sensors for the detection of dopamine (DA) based on 0D/2D/2D CuInS 2 /ZnS quantum dot (QD)–black phosphorous nanosheet (BPNS)–TiO 2 nanosheet (TiO 2 NS) nanocomposites. QDs can not only improve the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2022-02, Vol.414 (5), p.1829-1839
Hauptverfasser: Yi, Jinquan, Chen, Xiaoping, Lin, Jianwei, Song, Kai, Han, Zhizhong, Chen, Jinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1839
container_issue 5
container_start_page 1829
container_title Analytical and bioanalytical chemistry
container_volume 414
creator Yi, Jinquan
Chen, Xiaoping
Lin, Jianwei
Song, Kai
Han, Zhizhong
Chen, Jinghua
description In this work, we designed new dual-mode “turn-on” electrochemical (EC) and photoelectrochemical (PEC) sensors for the detection of dopamine (DA) based on 0D/2D/2D CuInS 2 /ZnS quantum dot (QD)–black phosphorous nanosheet (BPNS)–TiO 2 nanosheet (TiO 2 NS) nanocomposites. QDs can not only improve the photocurrent of the developed PEC sensors, but also provide the electrochemical signal in the EC detection. BPNSs as p-type semiconductor with high conductive properties work as electron acceptors and are utilized to improve the sensitivity of the DA PEC and EC sensors. Under irradiation of visible light or the applied voltage, DA is both excited and releases electrons, realizing “turn-on” detection. The PEC sensors have a linear range of 0.1–100 μM with a lower detection limit of 0.028 μM. For the EC detection, BPNSs can accelerate electron transfer which attribute to its excellent conductivity. In the range of 1–200 μM, the working curve of DA detection by the EC sensors was established and the detection limit is 0.88 μM. Comparing the two methods, the PEC sensors have a lower detection limit, and the EC sensors have a wider monitoring range. The dual-mode sensors of EC and PEC pave an effective way for the detection in biological and medical fields. Graphical abstract
doi_str_mv 10.1007/s00216-021-03812-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2617277642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622859725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-35f5a8950e4f985bea6ca9e2936db9ac3febddde6f41072fc46489b36d38910d3</originalsourceid><addsrcrecordid>eNp9kb9OwzAQxiMEElB4ASZLLCyhthM7zoha_lSqxEBZWCzHvtBAYqdxMrAx8QK8IU-C2yIqMSDZ59Pd7zud_EXRGcGXBONs7DGmhMchxDgRhMZiLzoinIiYcob3f_OUHkbH3r9gTJgg_Cj6mA6qjhtnABnoQfeVs8iVyLhWNZUFVCgPBoUino7p-qDJMLMPdPxkH9BqULYfmkD3X--fRa30K2qXzofbucEjq6zzS4B1d1Hd011hk2nXtM5XPfiT6KBUtYfTn3cUPd5cLyZ38fz-dja5msc6YbSPE1YyJXKGIS1zwQpQXKscaJ5wU-RKJyUUxhjgZUpwRkud8lTkRegmIifYJKPoYju37dxqAN_LpvIa6lpZCAtLyklGsyz8U0DP_6Avbuhs2C5QlAqWZ5QFim4p3TnvOyhl21WN6t4kwXJtjdxaI0OQG2ukCKJkK_IBts_Q7Ub_o_oGj8GT3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622859725</pqid></control><display><type>article</type><title>Dual-mode detection of dopamine based on 0D/2D/2D CuInS2/ZnS quantum dot–black phosphorous nanosheet–TiO2 nanosheet nanocomposites</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yi, Jinquan ; Chen, Xiaoping ; Lin, Jianwei ; Song, Kai ; Han, Zhizhong ; Chen, Jinghua</creator><creatorcontrib>Yi, Jinquan ; Chen, Xiaoping ; Lin, Jianwei ; Song, Kai ; Han, Zhizhong ; Chen, Jinghua</creatorcontrib><description>In this work, we designed new dual-mode “turn-on” electrochemical (EC) and photoelectrochemical (PEC) sensors for the detection of dopamine (DA) based on 0D/2D/2D CuInS 2 /ZnS quantum dot (QD)–black phosphorous nanosheet (BPNS)–TiO 2 nanosheet (TiO 2 NS) nanocomposites. QDs can not only improve the photocurrent of the developed PEC sensors, but also provide the electrochemical signal in the EC detection. BPNSs as p-type semiconductor with high conductive properties work as electron acceptors and are utilized to improve the sensitivity of the DA PEC and EC sensors. Under irradiation of visible light or the applied voltage, DA is both excited and releases electrons, realizing “turn-on” detection. The PEC sensors have a linear range of 0.1–100 μM with a lower detection limit of 0.028 μM. For the EC detection, BPNSs can accelerate electron transfer which attribute to its excellent conductivity. In the range of 1–200 μM, the working curve of DA detection by the EC sensors was established and the detection limit is 0.88 μM. Comparing the two methods, the PEC sensors have a lower detection limit, and the EC sensors have a wider monitoring range. The dual-mode sensors of EC and PEC pave an effective way for the detection in biological and medical fields. Graphical abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-021-03812-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Dopamine ; Electrochemistry ; Electron transfer ; Food Science ; Irradiation ; Laboratory Medicine ; Monitoring/Environmental Analysis ; Nanocomposites ; Nanosheets ; P-type semiconductors ; Photoelectric effect ; Quantum dots ; Radiation ; Research Paper ; Sensors ; Titanium dioxide ; Zinc sulfide</subject><ispartof>Analytical and bioanalytical chemistry, 2022-02, Vol.414 (5), p.1829-1839</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-35f5a8950e4f985bea6ca9e2936db9ac3febddde6f41072fc46489b36d38910d3</citedby><cites>FETCH-LOGICAL-c352t-35f5a8950e4f985bea6ca9e2936db9ac3febddde6f41072fc46489b36d38910d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-021-03812-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-021-03812-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yi, Jinquan</creatorcontrib><creatorcontrib>Chen, Xiaoping</creatorcontrib><creatorcontrib>Lin, Jianwei</creatorcontrib><creatorcontrib>Song, Kai</creatorcontrib><creatorcontrib>Han, Zhizhong</creatorcontrib><creatorcontrib>Chen, Jinghua</creatorcontrib><title>Dual-mode detection of dopamine based on 0D/2D/2D CuInS2/ZnS quantum dot–black phosphorous nanosheet–TiO2 nanosheet nanocomposites</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><description>In this work, we designed new dual-mode “turn-on” electrochemical (EC) and photoelectrochemical (PEC) sensors for the detection of dopamine (DA) based on 0D/2D/2D CuInS 2 /ZnS quantum dot (QD)–black phosphorous nanosheet (BPNS)–TiO 2 nanosheet (TiO 2 NS) nanocomposites. QDs can not only improve the photocurrent of the developed PEC sensors, but also provide the electrochemical signal in the EC detection. BPNSs as p-type semiconductor with high conductive properties work as electron acceptors and are utilized to improve the sensitivity of the DA PEC and EC sensors. Under irradiation of visible light or the applied voltage, DA is both excited and releases electrons, realizing “turn-on” detection. The PEC sensors have a linear range of 0.1–100 μM with a lower detection limit of 0.028 μM. For the EC detection, BPNSs can accelerate electron transfer which attribute to its excellent conductivity. In the range of 1–200 μM, the working curve of DA detection by the EC sensors was established and the detection limit is 0.88 μM. Comparing the two methods, the PEC sensors have a lower detection limit, and the EC sensors have a wider monitoring range. The dual-mode sensors of EC and PEC pave an effective way for the detection in biological and medical fields. Graphical abstract</description><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Dopamine</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Food Science</subject><subject>Irradiation</subject><subject>Laboratory Medicine</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nanocomposites</subject><subject>Nanosheets</subject><subject>P-type semiconductors</subject><subject>Photoelectric effect</subject><subject>Quantum dots</subject><subject>Radiation</subject><subject>Research Paper</subject><subject>Sensors</subject><subject>Titanium dioxide</subject><subject>Zinc sulfide</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kb9OwzAQxiMEElB4ASZLLCyhthM7zoha_lSqxEBZWCzHvtBAYqdxMrAx8QK8IU-C2yIqMSDZ59Pd7zud_EXRGcGXBONs7DGmhMchxDgRhMZiLzoinIiYcob3f_OUHkbH3r9gTJgg_Cj6mA6qjhtnABnoQfeVs8iVyLhWNZUFVCgPBoUino7p-qDJMLMPdPxkH9BqULYfmkD3X--fRa30K2qXzofbucEjq6zzS4B1d1Hd011hk2nXtM5XPfiT6KBUtYfTn3cUPd5cLyZ38fz-dja5msc6YbSPE1YyJXKGIS1zwQpQXKscaJ5wU-RKJyUUxhjgZUpwRkud8lTkRegmIifYJKPoYju37dxqAN_LpvIa6lpZCAtLyklGsyz8U0DP_6Avbuhs2C5QlAqWZ5QFim4p3TnvOyhl21WN6t4kwXJtjdxaI0OQG2ukCKJkK_IBts_Q7Ub_o_oGj8GT3Q</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Yi, Jinquan</creator><creator>Chen, Xiaoping</creator><creator>Lin, Jianwei</creator><creator>Song, Kai</creator><creator>Han, Zhizhong</creator><creator>Chen, Jinghua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20220201</creationdate><title>Dual-mode detection of dopamine based on 0D/2D/2D CuInS2/ZnS quantum dot–black phosphorous nanosheet–TiO2 nanosheet nanocomposites</title><author>Yi, Jinquan ; Chen, Xiaoping ; Lin, Jianwei ; Song, Kai ; Han, Zhizhong ; Chen, Jinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-35f5a8950e4f985bea6ca9e2936db9ac3febddde6f41072fc46489b36d38910d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Dopamine</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Food Science</topic><topic>Irradiation</topic><topic>Laboratory Medicine</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nanocomposites</topic><topic>Nanosheets</topic><topic>P-type semiconductors</topic><topic>Photoelectric effect</topic><topic>Quantum dots</topic><topic>Radiation</topic><topic>Research Paper</topic><topic>Sensors</topic><topic>Titanium dioxide</topic><topic>Zinc sulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Jinquan</creatorcontrib><creatorcontrib>Chen, Xiaoping</creatorcontrib><creatorcontrib>Lin, Jianwei</creatorcontrib><creatorcontrib>Song, Kai</creatorcontrib><creatorcontrib>Han, Zhizhong</creatorcontrib><creatorcontrib>Chen, Jinghua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Jinquan</au><au>Chen, Xiaoping</au><au>Lin, Jianwei</au><au>Song, Kai</au><au>Han, Zhizhong</au><au>Chen, Jinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-mode detection of dopamine based on 0D/2D/2D CuInS2/ZnS quantum dot–black phosphorous nanosheet–TiO2 nanosheet nanocomposites</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>414</volume><issue>5</issue><spage>1829</spage><epage>1839</epage><pages>1829-1839</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>In this work, we designed new dual-mode “turn-on” electrochemical (EC) and photoelectrochemical (PEC) sensors for the detection of dopamine (DA) based on 0D/2D/2D CuInS 2 /ZnS quantum dot (QD)–black phosphorous nanosheet (BPNS)–TiO 2 nanosheet (TiO 2 NS) nanocomposites. QDs can not only improve the photocurrent of the developed PEC sensors, but also provide the electrochemical signal in the EC detection. BPNSs as p-type semiconductor with high conductive properties work as electron acceptors and are utilized to improve the sensitivity of the DA PEC and EC sensors. Under irradiation of visible light or the applied voltage, DA is both excited and releases electrons, realizing “turn-on” detection. The PEC sensors have a linear range of 0.1–100 μM with a lower detection limit of 0.028 μM. For the EC detection, BPNSs can accelerate electron transfer which attribute to its excellent conductivity. In the range of 1–200 μM, the working curve of DA detection by the EC sensors was established and the detection limit is 0.88 μM. Comparing the two methods, the PEC sensors have a lower detection limit, and the EC sensors have a wider monitoring range. The dual-mode sensors of EC and PEC pave an effective way for the detection in biological and medical fields. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00216-021-03812-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2022-02, Vol.414 (5), p.1829-1839
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_miscellaneous_2617277642
source SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Biochemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Dopamine
Electrochemistry
Electron transfer
Food Science
Irradiation
Laboratory Medicine
Monitoring/Environmental Analysis
Nanocomposites
Nanosheets
P-type semiconductors
Photoelectric effect
Quantum dots
Radiation
Research Paper
Sensors
Titanium dioxide
Zinc sulfide
title Dual-mode detection of dopamine based on 0D/2D/2D CuInS2/ZnS quantum dot–black phosphorous nanosheet–TiO2 nanosheet nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-mode%20detection%20of%20dopamine%20based%20on%200D/2D/2D%20CuInS2/ZnS%20quantum%20dot%E2%80%93black%20phosphorous%20nanosheet%E2%80%93TiO2%20nanosheet%20nanocomposites&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Yi,%20Jinquan&rft.date=2022-02-01&rft.volume=414&rft.issue=5&rft.spage=1829&rft.epage=1839&rft.pages=1829-1839&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-021-03812-8&rft_dat=%3Cproquest_cross%3E2622859725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622859725&rft_id=info:pmid/&rfr_iscdi=true