Dual-mode detection of dopamine based on 0D/2D/2D CuInS2/ZnS quantum dot–black phosphorous nanosheet–TiO2 nanosheet nanocomposites
In this work, we designed new dual-mode “turn-on” electrochemical (EC) and photoelectrochemical (PEC) sensors for the detection of dopamine (DA) based on 0D/2D/2D CuInS 2 /ZnS quantum dot (QD)–black phosphorous nanosheet (BPNS)–TiO 2 nanosheet (TiO 2 NS) nanocomposites. QDs can not only improve the...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2022-02, Vol.414 (5), p.1829-1839 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1839 |
---|---|
container_issue | 5 |
container_start_page | 1829 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 414 |
creator | Yi, Jinquan Chen, Xiaoping Lin, Jianwei Song, Kai Han, Zhizhong Chen, Jinghua |
description | In this work, we designed new dual-mode “turn-on” electrochemical (EC) and photoelectrochemical (PEC) sensors for the detection of dopamine (DA) based on 0D/2D/2D CuInS
2
/ZnS quantum dot (QD)–black phosphorous nanosheet (BPNS)–TiO
2
nanosheet (TiO
2
NS) nanocomposites. QDs can not only improve the photocurrent of the developed PEC sensors, but also provide the electrochemical signal in the EC detection. BPNSs as p-type semiconductor with high conductive properties work as electron acceptors and are utilized to improve the sensitivity of the DA PEC and EC sensors. Under irradiation of visible light or the applied voltage, DA is both excited and releases electrons, realizing “turn-on” detection. The PEC sensors have a linear range of 0.1–100 μM with a lower detection limit of 0.028 μM. For the EC detection, BPNSs can accelerate electron transfer which attribute to its excellent conductivity. In the range of 1–200 μM, the working curve of DA detection by the EC sensors was established and the detection limit is 0.88 μM. Comparing the two methods, the PEC sensors have a lower detection limit, and the EC sensors have a wider monitoring range. The dual-mode sensors of EC and PEC pave an effective way for the detection in biological and medical fields.
Graphical abstract |
doi_str_mv | 10.1007/s00216-021-03812-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2617277642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622859725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-35f5a8950e4f985bea6ca9e2936db9ac3febddde6f41072fc46489b36d38910d3</originalsourceid><addsrcrecordid>eNp9kb9OwzAQxiMEElB4ASZLLCyhthM7zoha_lSqxEBZWCzHvtBAYqdxMrAx8QK8IU-C2yIqMSDZ59Pd7zud_EXRGcGXBONs7DGmhMchxDgRhMZiLzoinIiYcob3f_OUHkbH3r9gTJgg_Cj6mA6qjhtnABnoQfeVs8iVyLhWNZUFVCgPBoUino7p-qDJMLMPdPxkH9BqULYfmkD3X--fRa30K2qXzofbucEjq6zzS4B1d1Hd011hk2nXtM5XPfiT6KBUtYfTn3cUPd5cLyZ38fz-dja5msc6YbSPE1YyJXKGIS1zwQpQXKscaJ5wU-RKJyUUxhjgZUpwRkud8lTkRegmIifYJKPoYju37dxqAN_LpvIa6lpZCAtLyklGsyz8U0DP_6Avbuhs2C5QlAqWZ5QFim4p3TnvOyhl21WN6t4kwXJtjdxaI0OQG2ukCKJkK_IBts_Q7Ub_o_oGj8GT3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622859725</pqid></control><display><type>article</type><title>Dual-mode detection of dopamine based on 0D/2D/2D CuInS2/ZnS quantum dot–black phosphorous nanosheet–TiO2 nanosheet nanocomposites</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yi, Jinquan ; Chen, Xiaoping ; Lin, Jianwei ; Song, Kai ; Han, Zhizhong ; Chen, Jinghua</creator><creatorcontrib>Yi, Jinquan ; Chen, Xiaoping ; Lin, Jianwei ; Song, Kai ; Han, Zhizhong ; Chen, Jinghua</creatorcontrib><description>In this work, we designed new dual-mode “turn-on” electrochemical (EC) and photoelectrochemical (PEC) sensors for the detection of dopamine (DA) based on 0D/2D/2D CuInS
2
/ZnS quantum dot (QD)–black phosphorous nanosheet (BPNS)–TiO
2
nanosheet (TiO
2
NS) nanocomposites. QDs can not only improve the photocurrent of the developed PEC sensors, but also provide the electrochemical signal in the EC detection. BPNSs as p-type semiconductor with high conductive properties work as electron acceptors and are utilized to improve the sensitivity of the DA PEC and EC sensors. Under irradiation of visible light or the applied voltage, DA is both excited and releases electrons, realizing “turn-on” detection. The PEC sensors have a linear range of 0.1–100 μM with a lower detection limit of 0.028 μM. For the EC detection, BPNSs can accelerate electron transfer which attribute to its excellent conductivity. In the range of 1–200 μM, the working curve of DA detection by the EC sensors was established and the detection limit is 0.88 μM. Comparing the two methods, the PEC sensors have a lower detection limit, and the EC sensors have a wider monitoring range. The dual-mode sensors of EC and PEC pave an effective way for the detection in biological and medical fields.
Graphical abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-021-03812-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Dopamine ; Electrochemistry ; Electron transfer ; Food Science ; Irradiation ; Laboratory Medicine ; Monitoring/Environmental Analysis ; Nanocomposites ; Nanosheets ; P-type semiconductors ; Photoelectric effect ; Quantum dots ; Radiation ; Research Paper ; Sensors ; Titanium dioxide ; Zinc sulfide</subject><ispartof>Analytical and bioanalytical chemistry, 2022-02, Vol.414 (5), p.1829-1839</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-35f5a8950e4f985bea6ca9e2936db9ac3febddde6f41072fc46489b36d38910d3</citedby><cites>FETCH-LOGICAL-c352t-35f5a8950e4f985bea6ca9e2936db9ac3febddde6f41072fc46489b36d38910d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-021-03812-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-021-03812-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yi, Jinquan</creatorcontrib><creatorcontrib>Chen, Xiaoping</creatorcontrib><creatorcontrib>Lin, Jianwei</creatorcontrib><creatorcontrib>Song, Kai</creatorcontrib><creatorcontrib>Han, Zhizhong</creatorcontrib><creatorcontrib>Chen, Jinghua</creatorcontrib><title>Dual-mode detection of dopamine based on 0D/2D/2D CuInS2/ZnS quantum dot–black phosphorous nanosheet–TiO2 nanosheet nanocomposites</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><description>In this work, we designed new dual-mode “turn-on” electrochemical (EC) and photoelectrochemical (PEC) sensors for the detection of dopamine (DA) based on 0D/2D/2D CuInS
2
/ZnS quantum dot (QD)–black phosphorous nanosheet (BPNS)–TiO
2
nanosheet (TiO
2
NS) nanocomposites. QDs can not only improve the photocurrent of the developed PEC sensors, but also provide the electrochemical signal in the EC detection. BPNSs as p-type semiconductor with high conductive properties work as electron acceptors and are utilized to improve the sensitivity of the DA PEC and EC sensors. Under irradiation of visible light or the applied voltage, DA is both excited and releases electrons, realizing “turn-on” detection. The PEC sensors have a linear range of 0.1–100 μM with a lower detection limit of 0.028 μM. For the EC detection, BPNSs can accelerate electron transfer which attribute to its excellent conductivity. In the range of 1–200 μM, the working curve of DA detection by the EC sensors was established and the detection limit is 0.88 μM. Comparing the two methods, the PEC sensors have a lower detection limit, and the EC sensors have a wider monitoring range. The dual-mode sensors of EC and PEC pave an effective way for the detection in biological and medical fields.
Graphical abstract</description><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Dopamine</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Food Science</subject><subject>Irradiation</subject><subject>Laboratory Medicine</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nanocomposites</subject><subject>Nanosheets</subject><subject>P-type semiconductors</subject><subject>Photoelectric effect</subject><subject>Quantum dots</subject><subject>Radiation</subject><subject>Research Paper</subject><subject>Sensors</subject><subject>Titanium dioxide</subject><subject>Zinc sulfide</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kb9OwzAQxiMEElB4ASZLLCyhthM7zoha_lSqxEBZWCzHvtBAYqdxMrAx8QK8IU-C2yIqMSDZ59Pd7zud_EXRGcGXBONs7DGmhMchxDgRhMZiLzoinIiYcob3f_OUHkbH3r9gTJgg_Cj6mA6qjhtnABnoQfeVs8iVyLhWNZUFVCgPBoUino7p-qDJMLMPdPxkH9BqULYfmkD3X--fRa30K2qXzofbucEjq6zzS4B1d1Hd011hk2nXtM5XPfiT6KBUtYfTn3cUPd5cLyZ38fz-dja5msc6YbSPE1YyJXKGIS1zwQpQXKscaJ5wU-RKJyUUxhjgZUpwRkud8lTkRegmIifYJKPoYju37dxqAN_LpvIa6lpZCAtLyklGsyz8U0DP_6Avbuhs2C5QlAqWZ5QFim4p3TnvOyhl21WN6t4kwXJtjdxaI0OQG2ukCKJkK_IBts_Q7Ub_o_oGj8GT3Q</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Yi, Jinquan</creator><creator>Chen, Xiaoping</creator><creator>Lin, Jianwei</creator><creator>Song, Kai</creator><creator>Han, Zhizhong</creator><creator>Chen, Jinghua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20220201</creationdate><title>Dual-mode detection of dopamine based on 0D/2D/2D CuInS2/ZnS quantum dot–black phosphorous nanosheet–TiO2 nanosheet nanocomposites</title><author>Yi, Jinquan ; Chen, Xiaoping ; Lin, Jianwei ; Song, Kai ; Han, Zhizhong ; Chen, Jinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-35f5a8950e4f985bea6ca9e2936db9ac3febddde6f41072fc46489b36d38910d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Dopamine</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Food Science</topic><topic>Irradiation</topic><topic>Laboratory Medicine</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nanocomposites</topic><topic>Nanosheets</topic><topic>P-type semiconductors</topic><topic>Photoelectric effect</topic><topic>Quantum dots</topic><topic>Radiation</topic><topic>Research Paper</topic><topic>Sensors</topic><topic>Titanium dioxide</topic><topic>Zinc sulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Jinquan</creatorcontrib><creatorcontrib>Chen, Xiaoping</creatorcontrib><creatorcontrib>Lin, Jianwei</creatorcontrib><creatorcontrib>Song, Kai</creatorcontrib><creatorcontrib>Han, Zhizhong</creatorcontrib><creatorcontrib>Chen, Jinghua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Jinquan</au><au>Chen, Xiaoping</au><au>Lin, Jianwei</au><au>Song, Kai</au><au>Han, Zhizhong</au><au>Chen, Jinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-mode detection of dopamine based on 0D/2D/2D CuInS2/ZnS quantum dot–black phosphorous nanosheet–TiO2 nanosheet nanocomposites</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>414</volume><issue>5</issue><spage>1829</spage><epage>1839</epage><pages>1829-1839</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>In this work, we designed new dual-mode “turn-on” electrochemical (EC) and photoelectrochemical (PEC) sensors for the detection of dopamine (DA) based on 0D/2D/2D CuInS
2
/ZnS quantum dot (QD)–black phosphorous nanosheet (BPNS)–TiO
2
nanosheet (TiO
2
NS) nanocomposites. QDs can not only improve the photocurrent of the developed PEC sensors, but also provide the electrochemical signal in the EC detection. BPNSs as p-type semiconductor with high conductive properties work as electron acceptors and are utilized to improve the sensitivity of the DA PEC and EC sensors. Under irradiation of visible light or the applied voltage, DA is both excited and releases electrons, realizing “turn-on” detection. The PEC sensors have a linear range of 0.1–100 μM with a lower detection limit of 0.028 μM. For the EC detection, BPNSs can accelerate electron transfer which attribute to its excellent conductivity. In the range of 1–200 μM, the working curve of DA detection by the EC sensors was established and the detection limit is 0.88 μM. Comparing the two methods, the PEC sensors have a lower detection limit, and the EC sensors have a wider monitoring range. The dual-mode sensors of EC and PEC pave an effective way for the detection in biological and medical fields.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00216-021-03812-8</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2022-02, Vol.414 (5), p.1829-1839 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_2617277642 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analytical Chemistry Biochemistry Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Dopamine Electrochemistry Electron transfer Food Science Irradiation Laboratory Medicine Monitoring/Environmental Analysis Nanocomposites Nanosheets P-type semiconductors Photoelectric effect Quantum dots Radiation Research Paper Sensors Titanium dioxide Zinc sulfide |
title | Dual-mode detection of dopamine based on 0D/2D/2D CuInS2/ZnS quantum dot–black phosphorous nanosheet–TiO2 nanosheet nanocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-mode%20detection%20of%20dopamine%20based%20on%200D/2D/2D%20CuInS2/ZnS%20quantum%20dot%E2%80%93black%20phosphorous%20nanosheet%E2%80%93TiO2%20nanosheet%20nanocomposites&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Yi,%20Jinquan&rft.date=2022-02-01&rft.volume=414&rft.issue=5&rft.spage=1829&rft.epage=1839&rft.pages=1829-1839&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-021-03812-8&rft_dat=%3Cproquest_cross%3E2622859725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622859725&rft_id=info:pmid/&rfr_iscdi=true |