Combinatorial pharmacogenomic algorithm is predictive of sertraline metabolism in patients with major depressive disorder

•Pharmacogenomic (PGx) tests can be used to guide medication selection in psychiatry.•There is no consensus on which gene(s) to consider in PGx tests or panels.•Individual genes and the multi-gene PGx algorithm predicted sertraline blood levels.•The PGx algorithm was a better predictor of blood leve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychiatry research 2022-02, Vol.308, p.114354-114354, Article 114354
Hauptverfasser: Parikh, Sagar V., Law, Rebecca A., Hain, Daniel T., Rothschild, Anthony J., Thase, Michael E., Dunlop, Boadie W., DeBattista, Charles, Forester, Brent P., Shelton, Richard C., Macaluso, Matthew, Cogan, Elizabeth S., Brown, Krystal, Lewis, David J., Jablonski, Michael R., Greden, John F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114354
container_issue
container_start_page 114354
container_title Psychiatry research
container_volume 308
creator Parikh, Sagar V.
Law, Rebecca A.
Hain, Daniel T.
Rothschild, Anthony J.
Thase, Michael E.
Dunlop, Boadie W.
DeBattista, Charles
Forester, Brent P.
Shelton, Richard C.
Macaluso, Matthew
Cogan, Elizabeth S.
Brown, Krystal
Lewis, David J.
Jablonski, Michael R.
Greden, John F.
description •Pharmacogenomic (PGx) tests can be used to guide medication selection in psychiatry.•There is no consensus on which gene(s) to consider in PGx tests or panels.•Individual genes and the multi-gene PGx algorithm predicted sertraline blood levels.•The PGx algorithm was a better predictor of blood levels than individual genes. Pharmacogenomic testing can be used to guide medication selection in patients with major depressive disorder (MDD). Currently, there is no consensus on which gene or genes to consider in medication management. Here, we assessed the clinical validity of the combinatorial pharmacogenomic algorithm to predict sertraline blood levels in a subset of patients enrolled in the Genomics Used to Improve DEpression Decisions (GUIDED) trial. Patients who reported taking sertraline within ≤2 weeks of the screening blood draw were included. All patients received combinatorial pharmacogenomic testing, which included a weighted assessment of individual phenotypes for multiple pharmacokinetic genes relevant for sertraline (CYP2C19, CYP2B6, and CYP3A4). Sertraline blood levels were compared between phenotypes based on: 1) the pharmacokinetic portion of the combinatorial pharmacogenomic algorithm, and 2) individual genes. When evaluated separately, individual genes (for CYP2C19 and CYP2B6) and the combinatorial algorithm were significant predictors of sertraline blood levels. However, in multivariate analyses that included individual genes and the combinatorial pharmacogenomic algorithm, only the combinatorial pharmacogenomic algorithm remained a significant predictor of sertraline blood levels. These findings support the clinical validity of the combinatorial pharmacogenomic algorithm, in that it is a superior predictor of sertraline blood levels compared to individual genes.
doi_str_mv 10.1016/j.psychres.2021.114354
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2617273043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016517812100648X</els_id><sourcerecordid>2617273043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-b89c91659347e40c535425d03660f92a294ac0e0ca37be64c77b4af9001da9c63</originalsourceid><addsrcrecordid>eNqFkLtuGzEQRYkghq3Y_gWDZZpV-BIpdgmEvAADaZKa4HJnLQrL5YZDOdDfh4LstKmmmHNncA8hD5ytOeP6w2G94CnsC-BaMMHXnCu5UW_Iim-N6AwX8i1ZNXDTcbPlN-Qd4oGxRlp7TW6kslutJF-R0y6nPs6-5hL9RJe9L8mH_ARzTjFQPz21Rd0nGpEuBYYYanwGmkeKUGrxU5yBJqi-z1PEhs108TXCXJH-aUGa_CEXOkALI56jQ8RcBih35Gr0E8L9y7wlv758_rn71j3--Pp99-mxC4rr2vVbG2zrYaUyoFjYtJpiMzCpNRut8MIqHxiw4KXpQatgTK_8aBnjg7dBy1vy_nJ3Kfn3EbC6FDHANPkZ8hGd0NwII5mSDdUXNJSMWGB0S4nJl5PjzJ21u4N71e7O2t1Fews-vPw49gmGf7FXzw34eAGgNX2OUByGJik0oQVCdUOO__vxF-UNmh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617273043</pqid></control><display><type>article</type><title>Combinatorial pharmacogenomic algorithm is predictive of sertraline metabolism in patients with major depressive disorder</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Parikh, Sagar V. ; Law, Rebecca A. ; Hain, Daniel T. ; Rothschild, Anthony J. ; Thase, Michael E. ; Dunlop, Boadie W. ; DeBattista, Charles ; Forester, Brent P. ; Shelton, Richard C. ; Macaluso, Matthew ; Cogan, Elizabeth S. ; Brown, Krystal ; Lewis, David J. ; Jablonski, Michael R. ; Greden, John F.</creator><creatorcontrib>Parikh, Sagar V. ; Law, Rebecca A. ; Hain, Daniel T. ; Rothschild, Anthony J. ; Thase, Michael E. ; Dunlop, Boadie W. ; DeBattista, Charles ; Forester, Brent P. ; Shelton, Richard C. ; Macaluso, Matthew ; Cogan, Elizabeth S. ; Brown, Krystal ; Lewis, David J. ; Jablonski, Michael R. ; Greden, John F.</creatorcontrib><description>•Pharmacogenomic (PGx) tests can be used to guide medication selection in psychiatry.•There is no consensus on which gene(s) to consider in PGx tests or panels.•Individual genes and the multi-gene PGx algorithm predicted sertraline blood levels.•The PGx algorithm was a better predictor of blood levels than individual genes. Pharmacogenomic testing can be used to guide medication selection in patients with major depressive disorder (MDD). Currently, there is no consensus on which gene or genes to consider in medication management. Here, we assessed the clinical validity of the combinatorial pharmacogenomic algorithm to predict sertraline blood levels in a subset of patients enrolled in the Genomics Used to Improve DEpression Decisions (GUIDED) trial. Patients who reported taking sertraline within ≤2 weeks of the screening blood draw were included. All patients received combinatorial pharmacogenomic testing, which included a weighted assessment of individual phenotypes for multiple pharmacokinetic genes relevant for sertraline (CYP2C19, CYP2B6, and CYP3A4). Sertraline blood levels were compared between phenotypes based on: 1) the pharmacokinetic portion of the combinatorial pharmacogenomic algorithm, and 2) individual genes. When evaluated separately, individual genes (for CYP2C19 and CYP2B6) and the combinatorial algorithm were significant predictors of sertraline blood levels. However, in multivariate analyses that included individual genes and the combinatorial pharmacogenomic algorithm, only the combinatorial pharmacogenomic algorithm remained a significant predictor of sertraline blood levels. These findings support the clinical validity of the combinatorial pharmacogenomic algorithm, in that it is a superior predictor of sertraline blood levels compared to individual genes.</description><identifier>ISSN: 0165-1781</identifier><identifier>EISSN: 1872-7123</identifier><identifier>DOI: 10.1016/j.psychres.2021.114354</identifier><identifier>PMID: 34986431</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Algorithms ; Clinical validity ; CPIC guidelines ; Cytochrome P-450 CYP2B6 ; Cytochrome P-450 CYP2C19 - genetics ; Depressive Disorder, Major - drug therapy ; Depressive Disorder, Major - genetics ; GeneSight ; Humans ; Medication Blood Levels ; Pharmacokinetics ; Sertraline - therapeutic use ; Treatment Outcome</subject><ispartof>Psychiatry research, 2022-02, Vol.308, p.114354-114354, Article 114354</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-b89c91659347e40c535425d03660f92a294ac0e0ca37be64c77b4af9001da9c63</citedby><cites>FETCH-LOGICAL-c416t-b89c91659347e40c535425d03660f92a294ac0e0ca37be64c77b4af9001da9c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016517812100648X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34986431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parikh, Sagar V.</creatorcontrib><creatorcontrib>Law, Rebecca A.</creatorcontrib><creatorcontrib>Hain, Daniel T.</creatorcontrib><creatorcontrib>Rothschild, Anthony J.</creatorcontrib><creatorcontrib>Thase, Michael E.</creatorcontrib><creatorcontrib>Dunlop, Boadie W.</creatorcontrib><creatorcontrib>DeBattista, Charles</creatorcontrib><creatorcontrib>Forester, Brent P.</creatorcontrib><creatorcontrib>Shelton, Richard C.</creatorcontrib><creatorcontrib>Macaluso, Matthew</creatorcontrib><creatorcontrib>Cogan, Elizabeth S.</creatorcontrib><creatorcontrib>Brown, Krystal</creatorcontrib><creatorcontrib>Lewis, David J.</creatorcontrib><creatorcontrib>Jablonski, Michael R.</creatorcontrib><creatorcontrib>Greden, John F.</creatorcontrib><title>Combinatorial pharmacogenomic algorithm is predictive of sertraline metabolism in patients with major depressive disorder</title><title>Psychiatry research</title><addtitle>Psychiatry Res</addtitle><description>•Pharmacogenomic (PGx) tests can be used to guide medication selection in psychiatry.•There is no consensus on which gene(s) to consider in PGx tests or panels.•Individual genes and the multi-gene PGx algorithm predicted sertraline blood levels.•The PGx algorithm was a better predictor of blood levels than individual genes. Pharmacogenomic testing can be used to guide medication selection in patients with major depressive disorder (MDD). Currently, there is no consensus on which gene or genes to consider in medication management. Here, we assessed the clinical validity of the combinatorial pharmacogenomic algorithm to predict sertraline blood levels in a subset of patients enrolled in the Genomics Used to Improve DEpression Decisions (GUIDED) trial. Patients who reported taking sertraline within ≤2 weeks of the screening blood draw were included. All patients received combinatorial pharmacogenomic testing, which included a weighted assessment of individual phenotypes for multiple pharmacokinetic genes relevant for sertraline (CYP2C19, CYP2B6, and CYP3A4). Sertraline blood levels were compared between phenotypes based on: 1) the pharmacokinetic portion of the combinatorial pharmacogenomic algorithm, and 2) individual genes. When evaluated separately, individual genes (for CYP2C19 and CYP2B6) and the combinatorial algorithm were significant predictors of sertraline blood levels. However, in multivariate analyses that included individual genes and the combinatorial pharmacogenomic algorithm, only the combinatorial pharmacogenomic algorithm remained a significant predictor of sertraline blood levels. These findings support the clinical validity of the combinatorial pharmacogenomic algorithm, in that it is a superior predictor of sertraline blood levels compared to individual genes.</description><subject>Algorithms</subject><subject>Clinical validity</subject><subject>CPIC guidelines</subject><subject>Cytochrome P-450 CYP2B6</subject><subject>Cytochrome P-450 CYP2C19 - genetics</subject><subject>Depressive Disorder, Major - drug therapy</subject><subject>Depressive Disorder, Major - genetics</subject><subject>GeneSight</subject><subject>Humans</subject><subject>Medication Blood Levels</subject><subject>Pharmacokinetics</subject><subject>Sertraline - therapeutic use</subject><subject>Treatment Outcome</subject><issn>0165-1781</issn><issn>1872-7123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLtuGzEQRYkghq3Y_gWDZZpV-BIpdgmEvAADaZKa4HJnLQrL5YZDOdDfh4LstKmmmHNncA8hD5ytOeP6w2G94CnsC-BaMMHXnCu5UW_Iim-N6AwX8i1ZNXDTcbPlN-Qd4oGxRlp7TW6kslutJF-R0y6nPs6-5hL9RJe9L8mH_ARzTjFQPz21Rd0nGpEuBYYYanwGmkeKUGrxU5yBJqi-z1PEhs108TXCXJH-aUGa_CEXOkALI56jQ8RcBih35Gr0E8L9y7wlv758_rn71j3--Pp99-mxC4rr2vVbG2zrYaUyoFjYtJpiMzCpNRut8MIqHxiw4KXpQatgTK_8aBnjg7dBy1vy_nJ3Kfn3EbC6FDHANPkZ8hGd0NwII5mSDdUXNJSMWGB0S4nJl5PjzJ21u4N71e7O2t1Fews-vPw49gmGf7FXzw34eAGgNX2OUByGJik0oQVCdUOO__vxF-UNmh8</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Parikh, Sagar V.</creator><creator>Law, Rebecca A.</creator><creator>Hain, Daniel T.</creator><creator>Rothschild, Anthony J.</creator><creator>Thase, Michael E.</creator><creator>Dunlop, Boadie W.</creator><creator>DeBattista, Charles</creator><creator>Forester, Brent P.</creator><creator>Shelton, Richard C.</creator><creator>Macaluso, Matthew</creator><creator>Cogan, Elizabeth S.</creator><creator>Brown, Krystal</creator><creator>Lewis, David J.</creator><creator>Jablonski, Michael R.</creator><creator>Greden, John F.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202202</creationdate><title>Combinatorial pharmacogenomic algorithm is predictive of sertraline metabolism in patients with major depressive disorder</title><author>Parikh, Sagar V. ; Law, Rebecca A. ; Hain, Daniel T. ; Rothschild, Anthony J. ; Thase, Michael E. ; Dunlop, Boadie W. ; DeBattista, Charles ; Forester, Brent P. ; Shelton, Richard C. ; Macaluso, Matthew ; Cogan, Elizabeth S. ; Brown, Krystal ; Lewis, David J. ; Jablonski, Michael R. ; Greden, John F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-b89c91659347e40c535425d03660f92a294ac0e0ca37be64c77b4af9001da9c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Clinical validity</topic><topic>CPIC guidelines</topic><topic>Cytochrome P-450 CYP2B6</topic><topic>Cytochrome P-450 CYP2C19 - genetics</topic><topic>Depressive Disorder, Major - drug therapy</topic><topic>Depressive Disorder, Major - genetics</topic><topic>GeneSight</topic><topic>Humans</topic><topic>Medication Blood Levels</topic><topic>Pharmacokinetics</topic><topic>Sertraline - therapeutic use</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parikh, Sagar V.</creatorcontrib><creatorcontrib>Law, Rebecca A.</creatorcontrib><creatorcontrib>Hain, Daniel T.</creatorcontrib><creatorcontrib>Rothschild, Anthony J.</creatorcontrib><creatorcontrib>Thase, Michael E.</creatorcontrib><creatorcontrib>Dunlop, Boadie W.</creatorcontrib><creatorcontrib>DeBattista, Charles</creatorcontrib><creatorcontrib>Forester, Brent P.</creatorcontrib><creatorcontrib>Shelton, Richard C.</creatorcontrib><creatorcontrib>Macaluso, Matthew</creatorcontrib><creatorcontrib>Cogan, Elizabeth S.</creatorcontrib><creatorcontrib>Brown, Krystal</creatorcontrib><creatorcontrib>Lewis, David J.</creatorcontrib><creatorcontrib>Jablonski, Michael R.</creatorcontrib><creatorcontrib>Greden, John F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Psychiatry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parikh, Sagar V.</au><au>Law, Rebecca A.</au><au>Hain, Daniel T.</au><au>Rothschild, Anthony J.</au><au>Thase, Michael E.</au><au>Dunlop, Boadie W.</au><au>DeBattista, Charles</au><au>Forester, Brent P.</au><au>Shelton, Richard C.</au><au>Macaluso, Matthew</au><au>Cogan, Elizabeth S.</au><au>Brown, Krystal</au><au>Lewis, David J.</au><au>Jablonski, Michael R.</au><au>Greden, John F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combinatorial pharmacogenomic algorithm is predictive of sertraline metabolism in patients with major depressive disorder</atitle><jtitle>Psychiatry research</jtitle><addtitle>Psychiatry Res</addtitle><date>2022-02</date><risdate>2022</risdate><volume>308</volume><spage>114354</spage><epage>114354</epage><pages>114354-114354</pages><artnum>114354</artnum><issn>0165-1781</issn><eissn>1872-7123</eissn><abstract>•Pharmacogenomic (PGx) tests can be used to guide medication selection in psychiatry.•There is no consensus on which gene(s) to consider in PGx tests or panels.•Individual genes and the multi-gene PGx algorithm predicted sertraline blood levels.•The PGx algorithm was a better predictor of blood levels than individual genes. Pharmacogenomic testing can be used to guide medication selection in patients with major depressive disorder (MDD). Currently, there is no consensus on which gene or genes to consider in medication management. Here, we assessed the clinical validity of the combinatorial pharmacogenomic algorithm to predict sertraline blood levels in a subset of patients enrolled in the Genomics Used to Improve DEpression Decisions (GUIDED) trial. Patients who reported taking sertraline within ≤2 weeks of the screening blood draw were included. All patients received combinatorial pharmacogenomic testing, which included a weighted assessment of individual phenotypes for multiple pharmacokinetic genes relevant for sertraline (CYP2C19, CYP2B6, and CYP3A4). Sertraline blood levels were compared between phenotypes based on: 1) the pharmacokinetic portion of the combinatorial pharmacogenomic algorithm, and 2) individual genes. When evaluated separately, individual genes (for CYP2C19 and CYP2B6) and the combinatorial algorithm were significant predictors of sertraline blood levels. However, in multivariate analyses that included individual genes and the combinatorial pharmacogenomic algorithm, only the combinatorial pharmacogenomic algorithm remained a significant predictor of sertraline blood levels. These findings support the clinical validity of the combinatorial pharmacogenomic algorithm, in that it is a superior predictor of sertraline blood levels compared to individual genes.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>34986431</pmid><doi>10.1016/j.psychres.2021.114354</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-1781
ispartof Psychiatry research, 2022-02, Vol.308, p.114354-114354, Article 114354
issn 0165-1781
1872-7123
language eng
recordid cdi_proquest_miscellaneous_2617273043
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Clinical validity
CPIC guidelines
Cytochrome P-450 CYP2B6
Cytochrome P-450 CYP2C19 - genetics
Depressive Disorder, Major - drug therapy
Depressive Disorder, Major - genetics
GeneSight
Humans
Medication Blood Levels
Pharmacokinetics
Sertraline - therapeutic use
Treatment Outcome
title Combinatorial pharmacogenomic algorithm is predictive of sertraline metabolism in patients with major depressive disorder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combinatorial%20pharmacogenomic%20algorithm%20is%20predictive%20of%20sertraline%20metabolism%20in%20patients%20with%20major%20depressive%20disorder&rft.jtitle=Psychiatry%20research&rft.au=Parikh,%20Sagar%20V.&rft.date=2022-02&rft.volume=308&rft.spage=114354&rft.epage=114354&rft.pages=114354-114354&rft.artnum=114354&rft.issn=0165-1781&rft.eissn=1872-7123&rft_id=info:doi/10.1016/j.psychres.2021.114354&rft_dat=%3Cproquest_cross%3E2617273043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617273043&rft_id=info:pmid/34986431&rft_els_id=S016517812100648X&rfr_iscdi=true