Microfluidic Size Exclusion Chromatography (μSEC) for Extracellular Vesicles and Plasma Protein Separation
Extracellular vesicles (EVs) are recognized as next generation diagnostic biomarkers due to their disease‐specific biomolecular cargoes and importance in cell–cell communications. A major bottleneck in EV sample preparation is the inefficient and laborious isolation of nanoscale EVs (≈50–200 nm) fro...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-02, Vol.18 (6), p.e2104470-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | e2104470 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Leong, Sheng Yuan Ong, Hong Boon Tay, Hui Min Kong, Fang Upadya, Megha Gong, Lingyan Dao, Ming Dalan, Rinkoo Hou, Han Wei |
description | Extracellular vesicles (EVs) are recognized as next generation diagnostic biomarkers due to their disease‐specific biomolecular cargoes and importance in cell–cell communications. A major bottleneck in EV sample preparation is the inefficient and laborious isolation of nanoscale EVs (≈50–200 nm) from endogenous proteins in biological samples. Herein, a unique microfluidic platform is reported for EV‐protein fractionation based on the principle of size exclusion chromatography (SEC). Using a novel rapid (≈20 min) replica molding technique, a fritless microfluidic SEC device (μSEC) is fabricated using thiol‐ene polymer (UV glue NOA81, Young's modulus ≈1 GPa) for high pressure (up to 6 bar) sample processing. Controlled on‐chip nanoliter sample plug injection (600 nL) using a modified T‐junction injector is first demonstrated with rapid flow switching response time ( |
doi_str_mv | 10.1002/smll.202104470 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2616961221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616961221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4130-78e9ad2ac918249e78b70d6cb56f8b7fc593331e57bd89a96a63b882beabaabd3</originalsourceid><addsrcrecordid>eNqFkc1OGzEURi1EBSll22VliU26SPDPxGMvURQoUhCRQtmO7ng8jVPPOLVnBOmz9Rn6TDgKTSU2rO63OPfo6n4IfaZkTAlhl7FxbswIoyTLcnKEBlRQPhKSqeNDpuQUfYxxTQinLMtP0CnPlMwkFQP0887q4GvX28pqvLS_DZ49a9dH61s8XQXfQOd_BNistnj4989yNv2Kax8S1AXQxrneQcCPJlrtTMTQVnjhIDaAF8F3xrZ4aTYQoEu-T-hDDS6a89d5hr5fzx6m30bz-5vb6dV8pDPKySiXRkHFQCsqWaZMLsucVEKXE1GnWOuJ4pxTM8nLSipQAgQvpWSlgRKgrPgZGu69m-B_9SZ2RWPj7lZoje9jwQQVSlDGaEIv3qBr34c2XZcolpMsF4Ikaryn0qtiDKYuNsE2ELYFJcWuhmJXQ3GoIS18edX2ZWOqA_7v7wlQe-DJOrN9R1cs7-bz__IXT_qV1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627047660</pqid></control><display><type>article</type><title>Microfluidic Size Exclusion Chromatography (μSEC) for Extracellular Vesicles and Plasma Protein Separation</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Leong, Sheng Yuan ; Ong, Hong Boon ; Tay, Hui Min ; Kong, Fang ; Upadya, Megha ; Gong, Lingyan ; Dao, Ming ; Dalan, Rinkoo ; Hou, Han Wei</creator><creatorcontrib>Leong, Sheng Yuan ; Ong, Hong Boon ; Tay, Hui Min ; Kong, Fang ; Upadya, Megha ; Gong, Lingyan ; Dao, Ming ; Dalan, Rinkoo ; Hou, Han Wei</creatorcontrib><description>Extracellular vesicles (EVs) are recognized as next generation diagnostic biomarkers due to their disease‐specific biomolecular cargoes and importance in cell–cell communications. A major bottleneck in EV sample preparation is the inefficient and laborious isolation of nanoscale EVs (≈50–200 nm) from endogenous proteins in biological samples. Herein, a unique microfluidic platform is reported for EV‐protein fractionation based on the principle of size exclusion chromatography (SEC). Using a novel rapid (≈20 min) replica molding technique, a fritless microfluidic SEC device (μSEC) is fabricated using thiol‐ene polymer (UV glue NOA81, Young's modulus ≈1 GPa) for high pressure (up to 6 bar) sample processing. Controlled on‐chip nanoliter sample plug injection (600 nL) using a modified T‐junction injector is first demonstrated with rapid flow switching response time (<1.5 s). Device performance is validated using fluorescent nanoparticles (50 nm), albumin, and breast cancer cells (MCF‐7)‐derived EVs. As a proof‐of‐concept for clinical applications, EVs are directly isolated from undiluted human platelet‐poor plasma using μSEC and show distinct elution profiles between EVs and proteins based on nanoparticle particle analysis (NTA), Western blot and flow cytometry analysis. Overall, the optically transparent μSEC can be readily automated and integrated with EV detection assays for EVs manufacturing and clinical diagnostics.
Extracellular vesicles (EVs) play important roles in intercellular communication and they are emerging biomarkers for clinical diagnostics and therapeutics. This work reports a low‐cost microfluidic size exclusion chromatography platform for EVs isolation from human plasma. Its portable and modular design allows flexible coupling with downstream detection modules and real time process monitoring in point‐of‐care applications.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202104470</identifier><identifier>PMID: 34984816</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Albumins ; Biological properties ; Biomarkers ; blood ; Blood Proteins - metabolism ; Chromatography ; Chromatography, Gel ; Extracellular vesicles ; Extracellular Vesicles - metabolism ; Flow cytometry ; Fluorescence ; Fractionation ; Humans ; Ions ; microfluidic ; Microfluidics ; miniaturization ; Modulus of elasticity ; Nanoparticles ; Nanotechnology ; Plasma ; Proteins ; Response time ; Size exclusion chromatography ; Vesicles</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-02, Vol.18 (6), p.e2104470-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4130-78e9ad2ac918249e78b70d6cb56f8b7fc593331e57bd89a96a63b882beabaabd3</citedby><cites>FETCH-LOGICAL-c4130-78e9ad2ac918249e78b70d6cb56f8b7fc593331e57bd89a96a63b882beabaabd3</cites><orcidid>0000-0001-6631-6321 ; 0000-0001-9769-2696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202104470$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202104470$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34984816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leong, Sheng Yuan</creatorcontrib><creatorcontrib>Ong, Hong Boon</creatorcontrib><creatorcontrib>Tay, Hui Min</creatorcontrib><creatorcontrib>Kong, Fang</creatorcontrib><creatorcontrib>Upadya, Megha</creatorcontrib><creatorcontrib>Gong, Lingyan</creatorcontrib><creatorcontrib>Dao, Ming</creatorcontrib><creatorcontrib>Dalan, Rinkoo</creatorcontrib><creatorcontrib>Hou, Han Wei</creatorcontrib><title>Microfluidic Size Exclusion Chromatography (μSEC) for Extracellular Vesicles and Plasma Protein Separation</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Extracellular vesicles (EVs) are recognized as next generation diagnostic biomarkers due to their disease‐specific biomolecular cargoes and importance in cell–cell communications. A major bottleneck in EV sample preparation is the inefficient and laborious isolation of nanoscale EVs (≈50–200 nm) from endogenous proteins in biological samples. Herein, a unique microfluidic platform is reported for EV‐protein fractionation based on the principle of size exclusion chromatography (SEC). Using a novel rapid (≈20 min) replica molding technique, a fritless microfluidic SEC device (μSEC) is fabricated using thiol‐ene polymer (UV glue NOA81, Young's modulus ≈1 GPa) for high pressure (up to 6 bar) sample processing. Controlled on‐chip nanoliter sample plug injection (600 nL) using a modified T‐junction injector is first demonstrated with rapid flow switching response time (<1.5 s). Device performance is validated using fluorescent nanoparticles (50 nm), albumin, and breast cancer cells (MCF‐7)‐derived EVs. As a proof‐of‐concept for clinical applications, EVs are directly isolated from undiluted human platelet‐poor plasma using μSEC and show distinct elution profiles between EVs and proteins based on nanoparticle particle analysis (NTA), Western blot and flow cytometry analysis. Overall, the optically transparent μSEC can be readily automated and integrated with EV detection assays for EVs manufacturing and clinical diagnostics.
Extracellular vesicles (EVs) play important roles in intercellular communication and they are emerging biomarkers for clinical diagnostics and therapeutics. This work reports a low‐cost microfluidic size exclusion chromatography platform for EVs isolation from human plasma. Its portable and modular design allows flexible coupling with downstream detection modules and real time process monitoring in point‐of‐care applications.</description><subject>Albumins</subject><subject>Biological properties</subject><subject>Biomarkers</subject><subject>blood</subject><subject>Blood Proteins - metabolism</subject><subject>Chromatography</subject><subject>Chromatography, Gel</subject><subject>Extracellular vesicles</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Flow cytometry</subject><subject>Fluorescence</subject><subject>Fractionation</subject><subject>Humans</subject><subject>Ions</subject><subject>microfluidic</subject><subject>Microfluidics</subject><subject>miniaturization</subject><subject>Modulus of elasticity</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Plasma</subject><subject>Proteins</subject><subject>Response time</subject><subject>Size exclusion chromatography</subject><subject>Vesicles</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1OGzEURi1EBSll22VliU26SPDPxGMvURQoUhCRQtmO7ng8jVPPOLVnBOmz9Rn6TDgKTSU2rO63OPfo6n4IfaZkTAlhl7FxbswIoyTLcnKEBlRQPhKSqeNDpuQUfYxxTQinLMtP0CnPlMwkFQP0887q4GvX28pqvLS_DZ49a9dH61s8XQXfQOd_BNistnj4989yNv2Kax8S1AXQxrneQcCPJlrtTMTQVnjhIDaAF8F3xrZ4aTYQoEu-T-hDDS6a89d5hr5fzx6m30bz-5vb6dV8pDPKySiXRkHFQCsqWaZMLsucVEKXE1GnWOuJ4pxTM8nLSipQAgQvpWSlgRKgrPgZGu69m-B_9SZ2RWPj7lZoje9jwQQVSlDGaEIv3qBr34c2XZcolpMsF4Ikaryn0qtiDKYuNsE2ELYFJcWuhmJXQ3GoIS18edX2ZWOqA_7v7wlQe-DJOrN9R1cs7-bz__IXT_qV1Q</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Leong, Sheng Yuan</creator><creator>Ong, Hong Boon</creator><creator>Tay, Hui Min</creator><creator>Kong, Fang</creator><creator>Upadya, Megha</creator><creator>Gong, Lingyan</creator><creator>Dao, Ming</creator><creator>Dalan, Rinkoo</creator><creator>Hou, Han Wei</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6631-6321</orcidid><orcidid>https://orcid.org/0000-0001-9769-2696</orcidid></search><sort><creationdate>20220201</creationdate><title>Microfluidic Size Exclusion Chromatography (μSEC) for Extracellular Vesicles and Plasma Protein Separation</title><author>Leong, Sheng Yuan ; Ong, Hong Boon ; Tay, Hui Min ; Kong, Fang ; Upadya, Megha ; Gong, Lingyan ; Dao, Ming ; Dalan, Rinkoo ; Hou, Han Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4130-78e9ad2ac918249e78b70d6cb56f8b7fc593331e57bd89a96a63b882beabaabd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Albumins</topic><topic>Biological properties</topic><topic>Biomarkers</topic><topic>blood</topic><topic>Blood Proteins - metabolism</topic><topic>Chromatography</topic><topic>Chromatography, Gel</topic><topic>Extracellular vesicles</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Flow cytometry</topic><topic>Fluorescence</topic><topic>Fractionation</topic><topic>Humans</topic><topic>Ions</topic><topic>microfluidic</topic><topic>Microfluidics</topic><topic>miniaturization</topic><topic>Modulus of elasticity</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Plasma</topic><topic>Proteins</topic><topic>Response time</topic><topic>Size exclusion chromatography</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leong, Sheng Yuan</creatorcontrib><creatorcontrib>Ong, Hong Boon</creatorcontrib><creatorcontrib>Tay, Hui Min</creatorcontrib><creatorcontrib>Kong, Fang</creatorcontrib><creatorcontrib>Upadya, Megha</creatorcontrib><creatorcontrib>Gong, Lingyan</creatorcontrib><creatorcontrib>Dao, Ming</creatorcontrib><creatorcontrib>Dalan, Rinkoo</creatorcontrib><creatorcontrib>Hou, Han Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leong, Sheng Yuan</au><au>Ong, Hong Boon</au><au>Tay, Hui Min</au><au>Kong, Fang</au><au>Upadya, Megha</au><au>Gong, Lingyan</au><au>Dao, Ming</au><au>Dalan, Rinkoo</au><au>Hou, Han Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic Size Exclusion Chromatography (μSEC) for Extracellular Vesicles and Plasma Protein Separation</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>18</volume><issue>6</issue><spage>e2104470</spage><epage>n/a</epage><pages>e2104470-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Extracellular vesicles (EVs) are recognized as next generation diagnostic biomarkers due to their disease‐specific biomolecular cargoes and importance in cell–cell communications. A major bottleneck in EV sample preparation is the inefficient and laborious isolation of nanoscale EVs (≈50–200 nm) from endogenous proteins in biological samples. Herein, a unique microfluidic platform is reported for EV‐protein fractionation based on the principle of size exclusion chromatography (SEC). Using a novel rapid (≈20 min) replica molding technique, a fritless microfluidic SEC device (μSEC) is fabricated using thiol‐ene polymer (UV glue NOA81, Young's modulus ≈1 GPa) for high pressure (up to 6 bar) sample processing. Controlled on‐chip nanoliter sample plug injection (600 nL) using a modified T‐junction injector is first demonstrated with rapid flow switching response time (<1.5 s). Device performance is validated using fluorescent nanoparticles (50 nm), albumin, and breast cancer cells (MCF‐7)‐derived EVs. As a proof‐of‐concept for clinical applications, EVs are directly isolated from undiluted human platelet‐poor plasma using μSEC and show distinct elution profiles between EVs and proteins based on nanoparticle particle analysis (NTA), Western blot and flow cytometry analysis. Overall, the optically transparent μSEC can be readily automated and integrated with EV detection assays for EVs manufacturing and clinical diagnostics.
Extracellular vesicles (EVs) play important roles in intercellular communication and they are emerging biomarkers for clinical diagnostics and therapeutics. This work reports a low‐cost microfluidic size exclusion chromatography platform for EVs isolation from human plasma. Its portable and modular design allows flexible coupling with downstream detection modules and real time process monitoring in point‐of‐care applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34984816</pmid><doi>10.1002/smll.202104470</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6631-6321</orcidid><orcidid>https://orcid.org/0000-0001-9769-2696</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-02, Vol.18 (6), p.e2104470-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2616961221 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Albumins Biological properties Biomarkers blood Blood Proteins - metabolism Chromatography Chromatography, Gel Extracellular vesicles Extracellular Vesicles - metabolism Flow cytometry Fluorescence Fractionation Humans Ions microfluidic Microfluidics miniaturization Modulus of elasticity Nanoparticles Nanotechnology Plasma Proteins Response time Size exclusion chromatography Vesicles |
title | Microfluidic Size Exclusion Chromatography (μSEC) for Extracellular Vesicles and Plasma Protein Separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20Size%20Exclusion%20Chromatography%20(%CE%BCSEC)%20for%20Extracellular%20Vesicles%20and%20Plasma%20Protein%20Separation&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Leong,%20Sheng%20Yuan&rft.date=2022-02-01&rft.volume=18&rft.issue=6&rft.spage=e2104470&rft.epage=n/a&rft.pages=e2104470-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202104470&rft_dat=%3Cproquest_cross%3E2616961221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627047660&rft_id=info:pmid/34984816&rfr_iscdi=true |