Parallel coordination of image operators: model, algorithm and performance

To obtain machine vision algorithms which are robust in the face of variations in image lighting, arrangements of objects, viewing parameters, etc., it is helpful to build into the algorithms an adaptive control mechanism such as a state-space search procedure. Such a procedure dynamically determine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Image and vision computing 1993, Vol.11 (3), p.129-138
Hauptverfasser: Shu-Yuen, Hwang, Tanimoto, Steven L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue 3
container_start_page 129
container_title Image and vision computing
container_volume 11
creator Shu-Yuen, Hwang
Tanimoto, Steven L
description To obtain machine vision algorithms which are robust in the face of variations in image lighting, arrangements of objects, viewing parameters, etc., it is helpful to build into the algorithms an adaptive control mechanism such as a state-space search procedure. Such a procedure dynamically determines an optimal sequence of image processing operators to classify an image or to put its parts into correspondence with a model or set of models. One benefit of structuring the vision algorithm as a state-space search is that a multiplicity of paths toward goal nodes in the state space can be explored concurrently. In this paper, we identify several types of parallelism that may be exploited in vision algorithms based on state-space search. We present a new method, the ‘V ∗ algorithm’, which, unlike earlier parallel search algorithms, generates the successors of a state in parallel. In machine vision, this part of the search process is very expensive, and thus V ∗ permits substantial speedup. An experimental evaluation of V ∗ is presented which is based on a simulation of a character recognition algorithm; the simulation runs on a Sequent Balance 21000 using 16 processors.
doi_str_mv 10.1016/0262-8856(93)90051-H
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26166427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>026288569390051H</els_id><sourcerecordid>26166427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-833698390ca68c8da1c6e526d6fd35bc8b5bbf8d7512a87b33c564877c97bde83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gYccRBRczcfmYz0IUtQqBT3oOWSTbI1kNzXZCv57UysePQ3MPDPD-wBwhNEFRphfIsJJJSXjpw09axBiuJptgQmWorQxldtg8ofsgr2c3xFCAolmAh6fddIhuABNjMn6QY8-DjB20Pd64WBcuqTHmPIV7KN14RzqsIjJj2891IOFZdzF1OvBuAOw0-mQ3eFv3Qevd7cv01k1f7p_mN7MK0N5PVaSUt5I2iCjuTTSamy4Y4Rb3lnKWiNb1radtIJhoqVoKTWM11II04jWOkn3wcnm7jLFj5XLo-p9Ni4EPbi4yopwzHlNRAHrDWhSzDm5Ti1TSZW-FEZqLU6trai1FdVQ9SNOzcra8e99nY0OXSrhfP7brQWpMSMFu95grmT99C6pbLwrHqxPzozKRv__n288cIHd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26166427</pqid></control><display><type>article</type><title>Parallel coordination of image operators: model, algorithm and performance</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Shu-Yuen, Hwang ; Tanimoto, Steven L</creator><creatorcontrib>Shu-Yuen, Hwang ; Tanimoto, Steven L</creatorcontrib><description>To obtain machine vision algorithms which are robust in the face of variations in image lighting, arrangements of objects, viewing parameters, etc., it is helpful to build into the algorithms an adaptive control mechanism such as a state-space search procedure. Such a procedure dynamically determines an optimal sequence of image processing operators to classify an image or to put its parts into correspondence with a model or set of models. One benefit of structuring the vision algorithm as a state-space search is that a multiplicity of paths toward goal nodes in the state space can be explored concurrently. In this paper, we identify several types of parallelism that may be exploited in vision algorithms based on state-space search. We present a new method, the ‘V ∗ algorithm’, which, unlike earlier parallel search algorithms, generates the successors of a state in parallel. In machine vision, this part of the search process is very expensive, and thus V ∗ permits substantial speedup. An experimental evaluation of V ∗ is presented which is based on a simulation of a character recognition algorithm; the simulation runs on a Sequent Balance 21000 using 16 processors.</description><identifier>ISSN: 0262-8856</identifier><identifier>EISSN: 1872-8138</identifier><identifier>DOI: 10.1016/0262-8856(93)90051-H</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; parallel processing ; parallel search ; Pattern recognition. Digital image processing. Computational geometry ; state space search ; vision algorithm</subject><ispartof>Image and vision computing, 1993, Vol.11 (3), p.129-138</ispartof><rights>1993</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-833698390ca68c8da1c6e526d6fd35bc8b5bbf8d7512a87b33c564877c97bde83</citedby><cites>FETCH-LOGICAL-c364t-833698390ca68c8da1c6e526d6fd35bc8b5bbf8d7512a87b33c564877c97bde83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/026288569390051H$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4724152$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shu-Yuen, Hwang</creatorcontrib><creatorcontrib>Tanimoto, Steven L</creatorcontrib><title>Parallel coordination of image operators: model, algorithm and performance</title><title>Image and vision computing</title><description>To obtain machine vision algorithms which are robust in the face of variations in image lighting, arrangements of objects, viewing parameters, etc., it is helpful to build into the algorithms an adaptive control mechanism such as a state-space search procedure. Such a procedure dynamically determines an optimal sequence of image processing operators to classify an image or to put its parts into correspondence with a model or set of models. One benefit of structuring the vision algorithm as a state-space search is that a multiplicity of paths toward goal nodes in the state space can be explored concurrently. In this paper, we identify several types of parallelism that may be exploited in vision algorithms based on state-space search. We present a new method, the ‘V ∗ algorithm’, which, unlike earlier parallel search algorithms, generates the successors of a state in parallel. In machine vision, this part of the search process is very expensive, and thus V ∗ permits substantial speedup. An experimental evaluation of V ∗ is presented which is based on a simulation of a character recognition algorithm; the simulation runs on a Sequent Balance 21000 using 16 processors.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>parallel processing</subject><subject>parallel search</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>state space search</subject><subject>vision algorithm</subject><issn>0262-8856</issn><issn>1872-8138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gYccRBRczcfmYz0IUtQqBT3oOWSTbI1kNzXZCv57UysePQ3MPDPD-wBwhNEFRphfIsJJJSXjpw09axBiuJptgQmWorQxldtg8ofsgr2c3xFCAolmAh6fddIhuABNjMn6QY8-DjB20Pd64WBcuqTHmPIV7KN14RzqsIjJj2891IOFZdzF1OvBuAOw0-mQ3eFv3Qevd7cv01k1f7p_mN7MK0N5PVaSUt5I2iCjuTTSamy4Y4Rb3lnKWiNb1radtIJhoqVoKTWM11II04jWOkn3wcnm7jLFj5XLo-p9Ni4EPbi4yopwzHlNRAHrDWhSzDm5Ti1TSZW-FEZqLU6trai1FdVQ9SNOzcra8e99nY0OXSrhfP7brQWpMSMFu95grmT99C6pbLwrHqxPzozKRv__n288cIHd</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Shu-Yuen, Hwang</creator><creator>Tanimoto, Steven L</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1993</creationdate><title>Parallel coordination of image operators: model, algorithm and performance</title><author>Shu-Yuen, Hwang ; Tanimoto, Steven L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-833698390ca68c8da1c6e526d6fd35bc8b5bbf8d7512a87b33c564877c97bde83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>parallel processing</topic><topic>parallel search</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>state space search</topic><topic>vision algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu-Yuen, Hwang</creatorcontrib><creatorcontrib>Tanimoto, Steven L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Image and vision computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu-Yuen, Hwang</au><au>Tanimoto, Steven L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel coordination of image operators: model, algorithm and performance</atitle><jtitle>Image and vision computing</jtitle><date>1993</date><risdate>1993</risdate><volume>11</volume><issue>3</issue><spage>129</spage><epage>138</epage><pages>129-138</pages><issn>0262-8856</issn><eissn>1872-8138</eissn><abstract>To obtain machine vision algorithms which are robust in the face of variations in image lighting, arrangements of objects, viewing parameters, etc., it is helpful to build into the algorithms an adaptive control mechanism such as a state-space search procedure. Such a procedure dynamically determines an optimal sequence of image processing operators to classify an image or to put its parts into correspondence with a model or set of models. One benefit of structuring the vision algorithm as a state-space search is that a multiplicity of paths toward goal nodes in the state space can be explored concurrently. In this paper, we identify several types of parallelism that may be exploited in vision algorithms based on state-space search. We present a new method, the ‘V ∗ algorithm’, which, unlike earlier parallel search algorithms, generates the successors of a state in parallel. In machine vision, this part of the search process is very expensive, and thus V ∗ permits substantial speedup. An experimental evaluation of V ∗ is presented which is based on a simulation of a character recognition algorithm; the simulation runs on a Sequent Balance 21000 using 16 processors.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/0262-8856(93)90051-H</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0262-8856
ispartof Image and vision computing, 1993, Vol.11 (3), p.129-138
issn 0262-8856
1872-8138
language eng
recordid cdi_proquest_miscellaneous_26166427
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
parallel processing
parallel search
Pattern recognition. Digital image processing. Computational geometry
state space search
vision algorithm
title Parallel coordination of image operators: model, algorithm and performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20coordination%20of%20image%20operators:%20model,%20algorithm%20and%20performance&rft.jtitle=Image%20and%20vision%20computing&rft.au=Shu-Yuen,%20Hwang&rft.date=1993&rft.volume=11&rft.issue=3&rft.spage=129&rft.epage=138&rft.pages=129-138&rft.issn=0262-8856&rft.eissn=1872-8138&rft_id=info:doi/10.1016/0262-8856(93)90051-H&rft_dat=%3Cproquest_cross%3E26166427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26166427&rft_id=info:pmid/&rft_els_id=026288569390051H&rfr_iscdi=true