Oxidative damage in Nile tilapia, Oreochromis niloticus, is mainly induced by water temperature variation rather than Aurantiochytrium sp. meal dietary supplementation

We investigated whether dietary supplementation with Aurantiochytrium sp. meal, a DHA-rich source (docosahexaenoic acid, 22: 6 n-3), fed during long-term exposure to cold-suboptimal temperature (22 °C, P1), followed by short-term exposure to higher temperatures (28 °C, P2, and 33 °C, P3), would prom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fish physiology and biochemistry 2022-02, Vol.48 (1), p.85-99
Hauptverfasser: Nobrega, Renata Oselame, Dafre, Alcir Luiz, Corrêa, Camila Fernandes, Mattioni, Bruna, Batista, Rosana Oliveira, Pettigrew, James E., Fracalossi, Débora Machado
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 1
container_start_page 85
container_title Fish physiology and biochemistry
container_volume 48
creator Nobrega, Renata Oselame
Dafre, Alcir Luiz
Corrêa, Camila Fernandes
Mattioni, Bruna
Batista, Rosana Oliveira
Pettigrew, James E.
Fracalossi, Débora Machado
description We investigated whether dietary supplementation with Aurantiochytrium sp. meal, a DHA-rich source (docosahexaenoic acid, 22: 6 n-3), fed during long-term exposure to cold-suboptimal temperature (22 °C, P1), followed by short-term exposure to higher temperatures (28 °C, P2, and 33 °C, P3), would promote oxidative damage in Nile tilapia ( Oreochromis niloticus ). Two supplementation levels were tested: 1.0 g 100 g −1 (D1) and 4.0 g 100 g −1 (D4). A control diet, without the additive (D0, 0 g 100 g −1 ), and a positive control diet supplemented with cod liver oil (CLO) were also tested. The concentrations of DHA and total n-3 PUFAs in the CLO diet were similar to those found in diets D1 and D4, respectively. The parameters analyzed included hemoglobin (Hb), the antioxidant enzymes catalase, glutathione peroxidase, total glutathione, non-protein thiols, and the oxidative markers protein carbonyl and erythrocyte DNA damage. Nile tilapia did not present differences in Hb content, regardless of diet composition, but the temperature increase (P1 to P2) led to a higher Hb content. Likewise, the temperature increases promoted alterations in all antioxidant enzymes. The dietary supplementation with 1.0 g 100 g −1 Aurantiochytrium sp. meal after P1 caused minor DNA damage in Nile tilapia, demonstrating that the additive can safely be included in winter diets, despite its high DHA concentration.
doi_str_mv 10.1007/s10695-021-01025-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2616610406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2628404059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-a9d99ac20cbc58f3a9f3ca45ea4e525e934f4311253b3ecab3def059b57e4aed3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIkPgB1ggS2xYpIMf7e7xMop4SRGzgbVVbVdnHHW7Gz8C80X8Jk4mgMSCVamqzr126RLykrNzzlj_NnHWadUwwRvGmVCNekQ2XPWyUbzbPiYbpgVreN-KE_IspRvGmO47_pScyFZvuRT9hvzc_fAOsr9F6mCGa6Q-0M9-Qpr9BKuHM7qLuNh9XGafaPDTkr0t6YzWbgYfpkNVuGLR0eFAv0PGSDPOK0bIJSK9heir_xJoHezvlnsI9KJECHVq94ccfZlpWs_pjDBR5zFDPNBU1nXCGUO-Vz8nT0aYEr54qKfk6_t3Xy4_Nle7D58uL64aK3uVG9BOa7CC2cGq7ShBj9JCqxBaVEKhlu3YSs6FkoNEC4N0ODKlB9VjC-jkKXlz9F3j8q1gyqaebXGaIOBSkhEd7zrOWtZV9PU_6M1SYqi_q5TYthVSulLiSNm4pBRxNGv0c73QcGbuYjTHGE2N0dzHaFQVvXqwLsOM7o_kd24VkEcg1VW4xvj37f_Y_gJTxqy_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628404059</pqid></control><display><type>article</type><title>Oxidative damage in Nile tilapia, Oreochromis niloticus, is mainly induced by water temperature variation rather than Aurantiochytrium sp. meal dietary supplementation</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Nobrega, Renata Oselame ; Dafre, Alcir Luiz ; Corrêa, Camila Fernandes ; Mattioni, Bruna ; Batista, Rosana Oliveira ; Pettigrew, James E. ; Fracalossi, Débora Machado</creator><creatorcontrib>Nobrega, Renata Oselame ; Dafre, Alcir Luiz ; Corrêa, Camila Fernandes ; Mattioni, Bruna ; Batista, Rosana Oliveira ; Pettigrew, James E. ; Fracalossi, Débora Machado</creatorcontrib><description>We investigated whether dietary supplementation with Aurantiochytrium sp. meal, a DHA-rich source (docosahexaenoic acid, 22: 6 n-3), fed during long-term exposure to cold-suboptimal temperature (22 °C, P1), followed by short-term exposure to higher temperatures (28 °C, P2, and 33 °C, P3), would promote oxidative damage in Nile tilapia ( Oreochromis niloticus ). Two supplementation levels were tested: 1.0 g 100 g −1 (D1) and 4.0 g 100 g −1 (D4). A control diet, without the additive (D0, 0 g 100 g −1 ), and a positive control diet supplemented with cod liver oil (CLO) were also tested. The concentrations of DHA and total n-3 PUFAs in the CLO diet were similar to those found in diets D1 and D4, respectively. The parameters analyzed included hemoglobin (Hb), the antioxidant enzymes catalase, glutathione peroxidase, total glutathione, non-protein thiols, and the oxidative markers protein carbonyl and erythrocyte DNA damage. Nile tilapia did not present differences in Hb content, regardless of diet composition, but the temperature increase (P1 to P2) led to a higher Hb content. Likewise, the temperature increases promoted alterations in all antioxidant enzymes. The dietary supplementation with 1.0 g 100 g −1 Aurantiochytrium sp. meal after P1 caused minor DNA damage in Nile tilapia, demonstrating that the additive can safely be included in winter diets, despite its high DHA concentration.</description><identifier>ISSN: 0920-1742</identifier><identifier>EISSN: 1573-5168</identifier><identifier>DOI: 10.1007/s10695-021-01025-5</identifier><identifier>PMID: 34981327</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Additives ; Animal Anatomy ; Animal Biochemistry ; Animal Feed - analysis ; Animal Physiology ; Animals ; Antioxidants ; Antioxidants - metabolism ; Biomedical and Life Sciences ; Brittleness ; Carbonyl compounds ; Carbonyls ; Catalase ; Cichlids - metabolism ; Damage ; Deoxyribonucleic acid ; Diet ; Diet - veterinary ; Dietary supplements ; Dietary Supplements - analysis ; DNA ; DNA damage ; Docosahexaenoic acid ; Docosahexaenoic Acids - administration &amp; dosage ; Enzymes ; Erythrocytes ; Fish oils ; Freshwater &amp; Marine Ecology ; Freshwater fishes ; Glutathione ; Glutathione peroxidase ; Hemoglobin ; High temperature ; Histology ; Life Sciences ; Marine fishes ; Morphology ; Oreochromis niloticus ; Oxidative Stress ; Peroxidase ; Polyunsaturated fatty acids ; Ponds ; Protein thiols ; Proteins ; Seasonal variations ; Stramenopiles - chemistry ; Temperature ; Thiols ; Tilapia ; Water temperature ; Zoology</subject><ispartof>Fish physiology and biochemistry, 2022-02, Vol.48 (1), p.85-99</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature B.V.</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-a9d99ac20cbc58f3a9f3ca45ea4e525e934f4311253b3ecab3def059b57e4aed3</citedby><cites>FETCH-LOGICAL-c375t-a9d99ac20cbc58f3a9f3ca45ea4e525e934f4311253b3ecab3def059b57e4aed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10695-021-01025-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10695-021-01025-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34981327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nobrega, Renata Oselame</creatorcontrib><creatorcontrib>Dafre, Alcir Luiz</creatorcontrib><creatorcontrib>Corrêa, Camila Fernandes</creatorcontrib><creatorcontrib>Mattioni, Bruna</creatorcontrib><creatorcontrib>Batista, Rosana Oliveira</creatorcontrib><creatorcontrib>Pettigrew, James E.</creatorcontrib><creatorcontrib>Fracalossi, Débora Machado</creatorcontrib><title>Oxidative damage in Nile tilapia, Oreochromis niloticus, is mainly induced by water temperature variation rather than Aurantiochytrium sp. meal dietary supplementation</title><title>Fish physiology and biochemistry</title><addtitle>Fish Physiol Biochem</addtitle><addtitle>Fish Physiol Biochem</addtitle><description>We investigated whether dietary supplementation with Aurantiochytrium sp. meal, a DHA-rich source (docosahexaenoic acid, 22: 6 n-3), fed during long-term exposure to cold-suboptimal temperature (22 °C, P1), followed by short-term exposure to higher temperatures (28 °C, P2, and 33 °C, P3), would promote oxidative damage in Nile tilapia ( Oreochromis niloticus ). Two supplementation levels were tested: 1.0 g 100 g −1 (D1) and 4.0 g 100 g −1 (D4). A control diet, without the additive (D0, 0 g 100 g −1 ), and a positive control diet supplemented with cod liver oil (CLO) were also tested. The concentrations of DHA and total n-3 PUFAs in the CLO diet were similar to those found in diets D1 and D4, respectively. The parameters analyzed included hemoglobin (Hb), the antioxidant enzymes catalase, glutathione peroxidase, total glutathione, non-protein thiols, and the oxidative markers protein carbonyl and erythrocyte DNA damage. Nile tilapia did not present differences in Hb content, regardless of diet composition, but the temperature increase (P1 to P2) led to a higher Hb content. Likewise, the temperature increases promoted alterations in all antioxidant enzymes. The dietary supplementation with 1.0 g 100 g −1 Aurantiochytrium sp. meal after P1 caused minor DNA damage in Nile tilapia, demonstrating that the additive can safely be included in winter diets, despite its high DHA concentration.</description><subject>Additives</subject><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Animal Feed - analysis</subject><subject>Animal Physiology</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Antioxidants - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Brittleness</subject><subject>Carbonyl compounds</subject><subject>Carbonyls</subject><subject>Catalase</subject><subject>Cichlids - metabolism</subject><subject>Damage</subject><subject>Deoxyribonucleic acid</subject><subject>Diet</subject><subject>Diet - veterinary</subject><subject>Dietary supplements</subject><subject>Dietary Supplements - analysis</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Docosahexaenoic acid</subject><subject>Docosahexaenoic Acids - administration &amp; dosage</subject><subject>Enzymes</subject><subject>Erythrocytes</subject><subject>Fish oils</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Freshwater fishes</subject><subject>Glutathione</subject><subject>Glutathione peroxidase</subject><subject>Hemoglobin</subject><subject>High temperature</subject><subject>Histology</subject><subject>Life Sciences</subject><subject>Marine fishes</subject><subject>Morphology</subject><subject>Oreochromis niloticus</subject><subject>Oxidative Stress</subject><subject>Peroxidase</subject><subject>Polyunsaturated fatty acids</subject><subject>Ponds</subject><subject>Protein thiols</subject><subject>Proteins</subject><subject>Seasonal variations</subject><subject>Stramenopiles - chemistry</subject><subject>Temperature</subject><subject>Thiols</subject><subject>Tilapia</subject><subject>Water temperature</subject><subject>Zoology</subject><issn>0920-1742</issn><issn>1573-5168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctuFDEQRS0EIkPgB1ggS2xYpIMf7e7xMop4SRGzgbVVbVdnHHW7Gz8C80X8Jk4mgMSCVamqzr126RLykrNzzlj_NnHWadUwwRvGmVCNekQ2XPWyUbzbPiYbpgVreN-KE_IspRvGmO47_pScyFZvuRT9hvzc_fAOsr9F6mCGa6Q-0M9-Qpr9BKuHM7qLuNh9XGafaPDTkr0t6YzWbgYfpkNVuGLR0eFAv0PGSDPOK0bIJSK9heir_xJoHezvlnsI9KJECHVq94ccfZlpWs_pjDBR5zFDPNBU1nXCGUO-Vz8nT0aYEr54qKfk6_t3Xy4_Nle7D58uL64aK3uVG9BOa7CC2cGq7ShBj9JCqxBaVEKhlu3YSs6FkoNEC4N0ODKlB9VjC-jkKXlz9F3j8q1gyqaebXGaIOBSkhEd7zrOWtZV9PU_6M1SYqi_q5TYthVSulLiSNm4pBRxNGv0c73QcGbuYjTHGE2N0dzHaFQVvXqwLsOM7o_kd24VkEcg1VW4xvj37f_Y_gJTxqy_</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Nobrega, Renata Oselame</creator><creator>Dafre, Alcir Luiz</creator><creator>Corrêa, Camila Fernandes</creator><creator>Mattioni, Bruna</creator><creator>Batista, Rosana Oliveira</creator><creator>Pettigrew, James E.</creator><creator>Fracalossi, Débora Machado</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20220201</creationdate><title>Oxidative damage in Nile tilapia, Oreochromis niloticus, is mainly induced by water temperature variation rather than Aurantiochytrium sp. meal dietary supplementation</title><author>Nobrega, Renata Oselame ; Dafre, Alcir Luiz ; Corrêa, Camila Fernandes ; Mattioni, Bruna ; Batista, Rosana Oliveira ; Pettigrew, James E. ; Fracalossi, Débora Machado</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-a9d99ac20cbc58f3a9f3ca45ea4e525e934f4311253b3ecab3def059b57e4aed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Animal Feed - analysis</topic><topic>Animal Physiology</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Antioxidants - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Brittleness</topic><topic>Carbonyl compounds</topic><topic>Carbonyls</topic><topic>Catalase</topic><topic>Cichlids - metabolism</topic><topic>Damage</topic><topic>Deoxyribonucleic acid</topic><topic>Diet</topic><topic>Diet - veterinary</topic><topic>Dietary supplements</topic><topic>Dietary Supplements - analysis</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Docosahexaenoic acid</topic><topic>Docosahexaenoic Acids - administration &amp; dosage</topic><topic>Enzymes</topic><topic>Erythrocytes</topic><topic>Fish oils</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Freshwater fishes</topic><topic>Glutathione</topic><topic>Glutathione peroxidase</topic><topic>Hemoglobin</topic><topic>High temperature</topic><topic>Histology</topic><topic>Life Sciences</topic><topic>Marine fishes</topic><topic>Morphology</topic><topic>Oreochromis niloticus</topic><topic>Oxidative Stress</topic><topic>Peroxidase</topic><topic>Polyunsaturated fatty acids</topic><topic>Ponds</topic><topic>Protein thiols</topic><topic>Proteins</topic><topic>Seasonal variations</topic><topic>Stramenopiles - chemistry</topic><topic>Temperature</topic><topic>Thiols</topic><topic>Tilapia</topic><topic>Water temperature</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nobrega, Renata Oselame</creatorcontrib><creatorcontrib>Dafre, Alcir Luiz</creatorcontrib><creatorcontrib>Corrêa, Camila Fernandes</creatorcontrib><creatorcontrib>Mattioni, Bruna</creatorcontrib><creatorcontrib>Batista, Rosana Oliveira</creatorcontrib><creatorcontrib>Pettigrew, James E.</creatorcontrib><creatorcontrib>Fracalossi, Débora Machado</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Fish physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nobrega, Renata Oselame</au><au>Dafre, Alcir Luiz</au><au>Corrêa, Camila Fernandes</au><au>Mattioni, Bruna</au><au>Batista, Rosana Oliveira</au><au>Pettigrew, James E.</au><au>Fracalossi, Débora Machado</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative damage in Nile tilapia, Oreochromis niloticus, is mainly induced by water temperature variation rather than Aurantiochytrium sp. meal dietary supplementation</atitle><jtitle>Fish physiology and biochemistry</jtitle><stitle>Fish Physiol Biochem</stitle><addtitle>Fish Physiol Biochem</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>48</volume><issue>1</issue><spage>85</spage><epage>99</epage><pages>85-99</pages><issn>0920-1742</issn><eissn>1573-5168</eissn><abstract>We investigated whether dietary supplementation with Aurantiochytrium sp. meal, a DHA-rich source (docosahexaenoic acid, 22: 6 n-3), fed during long-term exposure to cold-suboptimal temperature (22 °C, P1), followed by short-term exposure to higher temperatures (28 °C, P2, and 33 °C, P3), would promote oxidative damage in Nile tilapia ( Oreochromis niloticus ). Two supplementation levels were tested: 1.0 g 100 g −1 (D1) and 4.0 g 100 g −1 (D4). A control diet, without the additive (D0, 0 g 100 g −1 ), and a positive control diet supplemented with cod liver oil (CLO) were also tested. The concentrations of DHA and total n-3 PUFAs in the CLO diet were similar to those found in diets D1 and D4, respectively. The parameters analyzed included hemoglobin (Hb), the antioxidant enzymes catalase, glutathione peroxidase, total glutathione, non-protein thiols, and the oxidative markers protein carbonyl and erythrocyte DNA damage. Nile tilapia did not present differences in Hb content, regardless of diet composition, but the temperature increase (P1 to P2) led to a higher Hb content. Likewise, the temperature increases promoted alterations in all antioxidant enzymes. The dietary supplementation with 1.0 g 100 g −1 Aurantiochytrium sp. meal after P1 caused minor DNA damage in Nile tilapia, demonstrating that the additive can safely be included in winter diets, despite its high DHA concentration.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>34981327</pmid><doi>10.1007/s10695-021-01025-5</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-1742
ispartof Fish physiology and biochemistry, 2022-02, Vol.48 (1), p.85-99
issn 0920-1742
1573-5168
language eng
recordid cdi_proquest_miscellaneous_2616610406
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Additives
Animal Anatomy
Animal Biochemistry
Animal Feed - analysis
Animal Physiology
Animals
Antioxidants
Antioxidants - metabolism
Biomedical and Life Sciences
Brittleness
Carbonyl compounds
Carbonyls
Catalase
Cichlids - metabolism
Damage
Deoxyribonucleic acid
Diet
Diet - veterinary
Dietary supplements
Dietary Supplements - analysis
DNA
DNA damage
Docosahexaenoic acid
Docosahexaenoic Acids - administration & dosage
Enzymes
Erythrocytes
Fish oils
Freshwater & Marine Ecology
Freshwater fishes
Glutathione
Glutathione peroxidase
Hemoglobin
High temperature
Histology
Life Sciences
Marine fishes
Morphology
Oreochromis niloticus
Oxidative Stress
Peroxidase
Polyunsaturated fatty acids
Ponds
Protein thiols
Proteins
Seasonal variations
Stramenopiles - chemistry
Temperature
Thiols
Tilapia
Water temperature
Zoology
title Oxidative damage in Nile tilapia, Oreochromis niloticus, is mainly induced by water temperature variation rather than Aurantiochytrium sp. meal dietary supplementation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20damage%20in%20Nile%20tilapia,%20Oreochromis%20niloticus,%20is%20mainly%20induced%20by%20water%20temperature%20variation%20rather%20than%20Aurantiochytrium%20sp.%20meal%20dietary%20supplementation&rft.jtitle=Fish%20physiology%20and%20biochemistry&rft.au=Nobrega,%20Renata%20Oselame&rft.date=2022-02-01&rft.volume=48&rft.issue=1&rft.spage=85&rft.epage=99&rft.pages=85-99&rft.issn=0920-1742&rft.eissn=1573-5168&rft_id=info:doi/10.1007/s10695-021-01025-5&rft_dat=%3Cproquest_cross%3E2628404059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628404059&rft_id=info:pmid/34981327&rfr_iscdi=true