Preoperative prediction of microvascular invasion in hepatocellular carcinoma: a radiomic nomogram based on MRI

To develop a reliable model to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) by combining a large number of clinical and imaging examinations, especially the radiomic features of magnetic resonance imaging (MRI). Three hundred and one consecutive patients from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical radiology 2022-04, Vol.77 (4), p.e269-e279
Hauptverfasser: Li, L., Su, Q., Yang, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e279
container_issue 4
container_start_page e269
container_title Clinical radiology
container_volume 77
creator Li, L.
Su, Q.
Yang, H.
description To develop a reliable model to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) by combining a large number of clinical and imaging examinations, especially the radiomic features of magnetic resonance imaging (MRI). Three hundred and one consecutive patients from two centres were enrolled. Least absolute shrinkage and selection operator (LASSO) regression was used to shrink the feature size, and logistic regression was used to construct a predictive radiomic signature. The ability of the nomogram to discriminate MVI in patients with HCC was evaluated using area under the curve (AUC) of receiver operating characteristics (ROC), accuracy, and calibration curves. The radiomic signature showed a significant association with MVI (p
doi_str_mv 10.1016/j.crad.2021.12.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2616600419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009926021005766</els_id><sourcerecordid>2616600419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7984d7648c183780566df7f8cefc4fb7e4c449eb9c6f932f9caa3973caa321243</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxS1UBMufL8AB-dhLgu14nbjqpUItIIFACCRulncyBq82cWpnV-Lb47DAkdPYM-89zfwIOeGs5Iyrs2UJ0balYIKXXJSMNTtkxis1L4TQTz_IjDGmCy0U2ycHKS2nrxRyj-xXUjdMzpsZCXcRw4DRjn6DdIjYehh96GlwtPMQw8YmWK9spL7Pz2nie_qCgx0D4Gr1PgIbwfehs7-opXklH7KV5kZ4jrajC5uwpdl5c391RHadXSU8_qiH5PHf34fzy-L69uLq_M91AdVcjUWtG9nWSjbAm6pu2Fyp1tWuAXQg3aJGCVJqXGhQTlfCabC20nU1FcGFrA7Jz23uEMP_NabRdD5NC9sewzoZobhSjEmus1RspfnalCI6M0Tf2fhqODMTaLM0E2gzgTZcmAw6m04_8teLDtsvyyfZLPi9FWC-cuMxmgQee8iAI8Jo2uC_y38DF9-QyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616600419</pqid></control><display><type>article</type><title>Preoperative prediction of microvascular invasion in hepatocellular carcinoma: a radiomic nomogram based on MRI</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, L. ; Su, Q. ; Yang, H.</creator><creatorcontrib>Li, L. ; Su, Q. ; Yang, H.</creatorcontrib><description>To develop a reliable model to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) by combining a large number of clinical and imaging examinations, especially the radiomic features of magnetic resonance imaging (MRI). Three hundred and one consecutive patients from two centres were enrolled. Least absolute shrinkage and selection operator (LASSO) regression was used to shrink the feature size, and logistic regression was used to construct a predictive radiomic signature. The ability of the nomogram to discriminate MVI in patients with HCC was evaluated using area under the curve (AUC) of receiver operating characteristics (ROC), accuracy, and calibration curves. The radiomic signature showed a significant association with MVI (p&lt;0.001 for all data sets). Other useful predictors of MVI included non-smooth tumour margin, internal arteries, and the alpha-fetoprotein (AFP) level. The nomogram demonstrated a strong prognostic capability in the training set and both validation sets, providing AUCs of 0.914 (95% confidence interval [CI] 0.853–0.956), 0.872 (95% CI: 0.757–0.946), and 0.881 (95% CI: 0.806–0.934), respectively. The preoperative radiomic nomogram, incorporating clinical risk factors and a radiomic signature, could predict MVI in patients with HCC. The MRI-based radiomic–clinical model predicted the MVI of HCC effectively and was more efficient compared with the radiomic model or clinical model alone. •The radiomic features were significantly associated with MVI.•Radiomic signature was an independent risk factor of MVI.•The radiomic model showed good accuracy for MVI prediction in HCC patients.</description><identifier>ISSN: 0009-9260</identifier><identifier>EISSN: 1365-229X</identifier><identifier>DOI: 10.1016/j.crad.2021.12.008</identifier><identifier>PMID: 34980458</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Carcinoma, Hepatocellular - pathology ; Humans ; Liver Neoplasms - pathology ; Magnetic Resonance Imaging ; Neoplasm Invasiveness ; Nomograms ; Retrospective Studies</subject><ispartof>Clinical radiology, 2022-04, Vol.77 (4), p.e269-e279</ispartof><rights>2021 The Royal College of Radiologists</rights><rights>Copyright © 2021 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7984d7648c183780566df7f8cefc4fb7e4c449eb9c6f932f9caa3973caa321243</citedby><cites>FETCH-LOGICAL-c356t-7984d7648c183780566df7f8cefc4fb7e4c449eb9c6f932f9caa3973caa321243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.crad.2021.12.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34980458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Su, Q.</creatorcontrib><creatorcontrib>Yang, H.</creatorcontrib><title>Preoperative prediction of microvascular invasion in hepatocellular carcinoma: a radiomic nomogram based on MRI</title><title>Clinical radiology</title><addtitle>Clin Radiol</addtitle><description>To develop a reliable model to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) by combining a large number of clinical and imaging examinations, especially the radiomic features of magnetic resonance imaging (MRI). Three hundred and one consecutive patients from two centres were enrolled. Least absolute shrinkage and selection operator (LASSO) regression was used to shrink the feature size, and logistic regression was used to construct a predictive radiomic signature. The ability of the nomogram to discriminate MVI in patients with HCC was evaluated using area under the curve (AUC) of receiver operating characteristics (ROC), accuracy, and calibration curves. The radiomic signature showed a significant association with MVI (p&lt;0.001 for all data sets). Other useful predictors of MVI included non-smooth tumour margin, internal arteries, and the alpha-fetoprotein (AFP) level. The nomogram demonstrated a strong prognostic capability in the training set and both validation sets, providing AUCs of 0.914 (95% confidence interval [CI] 0.853–0.956), 0.872 (95% CI: 0.757–0.946), and 0.881 (95% CI: 0.806–0.934), respectively. The preoperative radiomic nomogram, incorporating clinical risk factors and a radiomic signature, could predict MVI in patients with HCC. The MRI-based radiomic–clinical model predicted the MVI of HCC effectively and was more efficient compared with the radiomic model or clinical model alone. •The radiomic features were significantly associated with MVI.•Radiomic signature was an independent risk factor of MVI.•The radiomic model showed good accuracy for MVI prediction in HCC patients.</description><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Humans</subject><subject>Liver Neoplasms - pathology</subject><subject>Magnetic Resonance Imaging</subject><subject>Neoplasm Invasiveness</subject><subject>Nomograms</subject><subject>Retrospective Studies</subject><issn>0009-9260</issn><issn>1365-229X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9P3DAQxS1UBMufL8AB-dhLgu14nbjqpUItIIFACCRulncyBq82cWpnV-Lb47DAkdPYM-89zfwIOeGs5Iyrs2UJ0balYIKXXJSMNTtkxis1L4TQTz_IjDGmCy0U2ycHKS2nrxRyj-xXUjdMzpsZCXcRw4DRjn6DdIjYehh96GlwtPMQw8YmWK9spL7Pz2nie_qCgx0D4Gr1PgIbwfehs7-opXklH7KV5kZ4jrajC5uwpdl5c391RHadXSU8_qiH5PHf34fzy-L69uLq_M91AdVcjUWtG9nWSjbAm6pu2Fyp1tWuAXQg3aJGCVJqXGhQTlfCabC20nU1FcGFrA7Jz23uEMP_NabRdD5NC9sewzoZobhSjEmus1RspfnalCI6M0Tf2fhqODMTaLM0E2gzgTZcmAw6m04_8teLDtsvyyfZLPi9FWC-cuMxmgQee8iAI8Jo2uC_y38DF9-QyQ</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Li, L.</creator><creator>Su, Q.</creator><creator>Yang, H.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202204</creationdate><title>Preoperative prediction of microvascular invasion in hepatocellular carcinoma: a radiomic nomogram based on MRI</title><author>Li, L. ; Su, Q. ; Yang, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7984d7648c183780566df7f8cefc4fb7e4c449eb9c6f932f9caa3973caa321243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Humans</topic><topic>Liver Neoplasms - pathology</topic><topic>Magnetic Resonance Imaging</topic><topic>Neoplasm Invasiveness</topic><topic>Nomograms</topic><topic>Retrospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Su, Q.</creatorcontrib><creatorcontrib>Yang, H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, L.</au><au>Su, Q.</au><au>Yang, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preoperative prediction of microvascular invasion in hepatocellular carcinoma: a radiomic nomogram based on MRI</atitle><jtitle>Clinical radiology</jtitle><addtitle>Clin Radiol</addtitle><date>2022-04</date><risdate>2022</risdate><volume>77</volume><issue>4</issue><spage>e269</spage><epage>e279</epage><pages>e269-e279</pages><issn>0009-9260</issn><eissn>1365-229X</eissn><abstract>To develop a reliable model to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) by combining a large number of clinical and imaging examinations, especially the radiomic features of magnetic resonance imaging (MRI). Three hundred and one consecutive patients from two centres were enrolled. Least absolute shrinkage and selection operator (LASSO) regression was used to shrink the feature size, and logistic regression was used to construct a predictive radiomic signature. The ability of the nomogram to discriminate MVI in patients with HCC was evaluated using area under the curve (AUC) of receiver operating characteristics (ROC), accuracy, and calibration curves. The radiomic signature showed a significant association with MVI (p&lt;0.001 for all data sets). Other useful predictors of MVI included non-smooth tumour margin, internal arteries, and the alpha-fetoprotein (AFP) level. The nomogram demonstrated a strong prognostic capability in the training set and both validation sets, providing AUCs of 0.914 (95% confidence interval [CI] 0.853–0.956), 0.872 (95% CI: 0.757–0.946), and 0.881 (95% CI: 0.806–0.934), respectively. The preoperative radiomic nomogram, incorporating clinical risk factors and a radiomic signature, could predict MVI in patients with HCC. The MRI-based radiomic–clinical model predicted the MVI of HCC effectively and was more efficient compared with the radiomic model or clinical model alone. •The radiomic features were significantly associated with MVI.•Radiomic signature was an independent risk factor of MVI.•The radiomic model showed good accuracy for MVI prediction in HCC patients.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34980458</pmid><doi>10.1016/j.crad.2021.12.008</doi></addata></record>
fulltext fulltext
identifier ISSN: 0009-9260
ispartof Clinical radiology, 2022-04, Vol.77 (4), p.e269-e279
issn 0009-9260
1365-229X
language eng
recordid cdi_proquest_miscellaneous_2616600419
source MEDLINE; Elsevier ScienceDirect Journals
subjects Carcinoma, Hepatocellular - pathology
Humans
Liver Neoplasms - pathology
Magnetic Resonance Imaging
Neoplasm Invasiveness
Nomograms
Retrospective Studies
title Preoperative prediction of microvascular invasion in hepatocellular carcinoma: a radiomic nomogram based on MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preoperative%20prediction%20of%20microvascular%20invasion%20in%20hepatocellular%20carcinoma:%20a%20radiomic%20nomogram%20based%20on%20MRI&rft.jtitle=Clinical%20radiology&rft.au=Li,%20L.&rft.date=2022-04&rft.volume=77&rft.issue=4&rft.spage=e269&rft.epage=e279&rft.pages=e269-e279&rft.issn=0009-9260&rft.eissn=1365-229X&rft_id=info:doi/10.1016/j.crad.2021.12.008&rft_dat=%3Cproquest_cross%3E2616600419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616600419&rft_id=info:pmid/34980458&rft_els_id=S0009926021005766&rfr_iscdi=true