Preoperative prediction of microvascular invasion in hepatocellular carcinoma: a radiomic nomogram based on MRI
To develop a reliable model to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) by combining a large number of clinical and imaging examinations, especially the radiomic features of magnetic resonance imaging (MRI). Three hundred and one consecutive patients from...
Gespeichert in:
Veröffentlicht in: | Clinical radiology 2022-04, Vol.77 (4), p.e269-e279 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e279 |
---|---|
container_issue | 4 |
container_start_page | e269 |
container_title | Clinical radiology |
container_volume | 77 |
creator | Li, L. Su, Q. Yang, H. |
description | To develop a reliable model to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) by combining a large number of clinical and imaging examinations, especially the radiomic features of magnetic resonance imaging (MRI).
Three hundred and one consecutive patients from two centres were enrolled. Least absolute shrinkage and selection operator (LASSO) regression was used to shrink the feature size, and logistic regression was used to construct a predictive radiomic signature. The ability of the nomogram to discriminate MVI in patients with HCC was evaluated using area under the curve (AUC) of receiver operating characteristics (ROC), accuracy, and calibration curves.
The radiomic signature showed a significant association with MVI (p |
doi_str_mv | 10.1016/j.crad.2021.12.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2616600419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009926021005766</els_id><sourcerecordid>2616600419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-7984d7648c183780566df7f8cefc4fb7e4c449eb9c6f932f9caa3973caa321243</originalsourceid><addsrcrecordid>eNp9kE9P3DAQxS1UBMufL8AB-dhLgu14nbjqpUItIIFACCRulncyBq82cWpnV-Lb47DAkdPYM-89zfwIOeGs5Iyrs2UJ0balYIKXXJSMNTtkxis1L4TQTz_IjDGmCy0U2ycHKS2nrxRyj-xXUjdMzpsZCXcRw4DRjn6DdIjYehh96GlwtPMQw8YmWK9spL7Pz2nie_qCgx0D4Gr1PgIbwfehs7-opXklH7KV5kZ4jrajC5uwpdl5c391RHadXSU8_qiH5PHf34fzy-L69uLq_M91AdVcjUWtG9nWSjbAm6pu2Fyp1tWuAXQg3aJGCVJqXGhQTlfCabC20nU1FcGFrA7Jz23uEMP_NabRdD5NC9sewzoZobhSjEmus1RspfnalCI6M0Tf2fhqODMTaLM0E2gzgTZcmAw6m04_8teLDtsvyyfZLPi9FWC-cuMxmgQee8iAI8Jo2uC_y38DF9-QyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616600419</pqid></control><display><type>article</type><title>Preoperative prediction of microvascular invasion in hepatocellular carcinoma: a radiomic nomogram based on MRI</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, L. ; Su, Q. ; Yang, H.</creator><creatorcontrib>Li, L. ; Su, Q. ; Yang, H.</creatorcontrib><description>To develop a reliable model to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) by combining a large number of clinical and imaging examinations, especially the radiomic features of magnetic resonance imaging (MRI).
Three hundred and one consecutive patients from two centres were enrolled. Least absolute shrinkage and selection operator (LASSO) regression was used to shrink the feature size, and logistic regression was used to construct a predictive radiomic signature. The ability of the nomogram to discriminate MVI in patients with HCC was evaluated using area under the curve (AUC) of receiver operating characteristics (ROC), accuracy, and calibration curves.
The radiomic signature showed a significant association with MVI (p<0.001 for all data sets). Other useful predictors of MVI included non-smooth tumour margin, internal arteries, and the alpha-fetoprotein (AFP) level. The nomogram demonstrated a strong prognostic capability in the training set and both validation sets, providing AUCs of 0.914 (95% confidence interval [CI] 0.853–0.956), 0.872 (95% CI: 0.757–0.946), and 0.881 (95% CI: 0.806–0.934), respectively.
The preoperative radiomic nomogram, incorporating clinical risk factors and a radiomic signature, could predict MVI in patients with HCC. The MRI-based radiomic–clinical model predicted the MVI of HCC effectively and was more efficient compared with the radiomic model or clinical model alone.
•The radiomic features were significantly associated with MVI.•Radiomic signature was an independent risk factor of MVI.•The radiomic model showed good accuracy for MVI prediction in HCC patients.</description><identifier>ISSN: 0009-9260</identifier><identifier>EISSN: 1365-229X</identifier><identifier>DOI: 10.1016/j.crad.2021.12.008</identifier><identifier>PMID: 34980458</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Carcinoma, Hepatocellular - pathology ; Humans ; Liver Neoplasms - pathology ; Magnetic Resonance Imaging ; Neoplasm Invasiveness ; Nomograms ; Retrospective Studies</subject><ispartof>Clinical radiology, 2022-04, Vol.77 (4), p.e269-e279</ispartof><rights>2021 The Royal College of Radiologists</rights><rights>Copyright © 2021 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-7984d7648c183780566df7f8cefc4fb7e4c449eb9c6f932f9caa3973caa321243</citedby><cites>FETCH-LOGICAL-c356t-7984d7648c183780566df7f8cefc4fb7e4c449eb9c6f932f9caa3973caa321243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.crad.2021.12.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34980458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Su, Q.</creatorcontrib><creatorcontrib>Yang, H.</creatorcontrib><title>Preoperative prediction of microvascular invasion in hepatocellular carcinoma: a radiomic nomogram based on MRI</title><title>Clinical radiology</title><addtitle>Clin Radiol</addtitle><description>To develop a reliable model to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) by combining a large number of clinical and imaging examinations, especially the radiomic features of magnetic resonance imaging (MRI).
Three hundred and one consecutive patients from two centres were enrolled. Least absolute shrinkage and selection operator (LASSO) regression was used to shrink the feature size, and logistic regression was used to construct a predictive radiomic signature. The ability of the nomogram to discriminate MVI in patients with HCC was evaluated using area under the curve (AUC) of receiver operating characteristics (ROC), accuracy, and calibration curves.
The radiomic signature showed a significant association with MVI (p<0.001 for all data sets). Other useful predictors of MVI included non-smooth tumour margin, internal arteries, and the alpha-fetoprotein (AFP) level. The nomogram demonstrated a strong prognostic capability in the training set and both validation sets, providing AUCs of 0.914 (95% confidence interval [CI] 0.853–0.956), 0.872 (95% CI: 0.757–0.946), and 0.881 (95% CI: 0.806–0.934), respectively.
The preoperative radiomic nomogram, incorporating clinical risk factors and a radiomic signature, could predict MVI in patients with HCC. The MRI-based radiomic–clinical model predicted the MVI of HCC effectively and was more efficient compared with the radiomic model or clinical model alone.
•The radiomic features were significantly associated with MVI.•Radiomic signature was an independent risk factor of MVI.•The radiomic model showed good accuracy for MVI prediction in HCC patients.</description><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Humans</subject><subject>Liver Neoplasms - pathology</subject><subject>Magnetic Resonance Imaging</subject><subject>Neoplasm Invasiveness</subject><subject>Nomograms</subject><subject>Retrospective Studies</subject><issn>0009-9260</issn><issn>1365-229X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9P3DAQxS1UBMufL8AB-dhLgu14nbjqpUItIIFACCRulncyBq82cWpnV-Lb47DAkdPYM-89zfwIOeGs5Iyrs2UJ0balYIKXXJSMNTtkxis1L4TQTz_IjDGmCy0U2ycHKS2nrxRyj-xXUjdMzpsZCXcRw4DRjn6DdIjYehh96GlwtPMQw8YmWK9spL7Pz2nie_qCgx0D4Gr1PgIbwfehs7-opXklH7KV5kZ4jrajC5uwpdl5c391RHadXSU8_qiH5PHf34fzy-L69uLq_M91AdVcjUWtG9nWSjbAm6pu2Fyp1tWuAXQg3aJGCVJqXGhQTlfCabC20nU1FcGFrA7Jz23uEMP_NabRdD5NC9sewzoZobhSjEmus1RspfnalCI6M0Tf2fhqODMTaLM0E2gzgTZcmAw6m04_8teLDtsvyyfZLPi9FWC-cuMxmgQee8iAI8Jo2uC_y38DF9-QyQ</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Li, L.</creator><creator>Su, Q.</creator><creator>Yang, H.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202204</creationdate><title>Preoperative prediction of microvascular invasion in hepatocellular carcinoma: a radiomic nomogram based on MRI</title><author>Li, L. ; Su, Q. ; Yang, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-7984d7648c183780566df7f8cefc4fb7e4c449eb9c6f932f9caa3973caa321243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Humans</topic><topic>Liver Neoplasms - pathology</topic><topic>Magnetic Resonance Imaging</topic><topic>Neoplasm Invasiveness</topic><topic>Nomograms</topic><topic>Retrospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Su, Q.</creatorcontrib><creatorcontrib>Yang, H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, L.</au><au>Su, Q.</au><au>Yang, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preoperative prediction of microvascular invasion in hepatocellular carcinoma: a radiomic nomogram based on MRI</atitle><jtitle>Clinical radiology</jtitle><addtitle>Clin Radiol</addtitle><date>2022-04</date><risdate>2022</risdate><volume>77</volume><issue>4</issue><spage>e269</spage><epage>e279</epage><pages>e269-e279</pages><issn>0009-9260</issn><eissn>1365-229X</eissn><abstract>To develop a reliable model to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) by combining a large number of clinical and imaging examinations, especially the radiomic features of magnetic resonance imaging (MRI).
Three hundred and one consecutive patients from two centres were enrolled. Least absolute shrinkage and selection operator (LASSO) regression was used to shrink the feature size, and logistic regression was used to construct a predictive radiomic signature. The ability of the nomogram to discriminate MVI in patients with HCC was evaluated using area under the curve (AUC) of receiver operating characteristics (ROC), accuracy, and calibration curves.
The radiomic signature showed a significant association with MVI (p<0.001 for all data sets). Other useful predictors of MVI included non-smooth tumour margin, internal arteries, and the alpha-fetoprotein (AFP) level. The nomogram demonstrated a strong prognostic capability in the training set and both validation sets, providing AUCs of 0.914 (95% confidence interval [CI] 0.853–0.956), 0.872 (95% CI: 0.757–0.946), and 0.881 (95% CI: 0.806–0.934), respectively.
The preoperative radiomic nomogram, incorporating clinical risk factors and a radiomic signature, could predict MVI in patients with HCC. The MRI-based radiomic–clinical model predicted the MVI of HCC effectively and was more efficient compared with the radiomic model or clinical model alone.
•The radiomic features were significantly associated with MVI.•Radiomic signature was an independent risk factor of MVI.•The radiomic model showed good accuracy for MVI prediction in HCC patients.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34980458</pmid><doi>10.1016/j.crad.2021.12.008</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-9260 |
ispartof | Clinical radiology, 2022-04, Vol.77 (4), p.e269-e279 |
issn | 0009-9260 1365-229X |
language | eng |
recordid | cdi_proquest_miscellaneous_2616600419 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Carcinoma, Hepatocellular - pathology Humans Liver Neoplasms - pathology Magnetic Resonance Imaging Neoplasm Invasiveness Nomograms Retrospective Studies |
title | Preoperative prediction of microvascular invasion in hepatocellular carcinoma: a radiomic nomogram based on MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preoperative%20prediction%20of%20microvascular%20invasion%20in%20hepatocellular%20carcinoma:%20a%20radiomic%20nomogram%20based%20on%20MRI&rft.jtitle=Clinical%20radiology&rft.au=Li,%20L.&rft.date=2022-04&rft.volume=77&rft.issue=4&rft.spage=e269&rft.epage=e279&rft.pages=e269-e279&rft.issn=0009-9260&rft.eissn=1365-229X&rft_id=info:doi/10.1016/j.crad.2021.12.008&rft_dat=%3Cproquest_cross%3E2616600419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616600419&rft_id=info:pmid/34980458&rft_els_id=S0009926021005766&rfr_iscdi=true |