Temperature‐Insensitive Efficient Inorganic Perovskite Photovoltaics by Bulk Heterojunctions

Inorganic perovskite solar cells (IPSCs) emerge as an ideal candidate for applications beyond terrestrial implementation due to their robustness. However, underlying mechanisms regarding their photovoltaic process at different temperatures remain unclear. Based on a stable absorber of CsPbI2.85(BrCl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-03, Vol.34 (9), p.e2108357-n/a
Hauptverfasser: Wang, Feng, Qiu, Zhiwen, Chen, Yihua, Zhang, Yu, Huang, Zijian, Li, Nengxu, Niu, Xiuxiu, Zai, Huachao, Guo, Zhenyu, Liu, Huifen, Zhou, Huanping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page e2108357
container_title Advanced materials (Weinheim)
container_volume 34
creator Wang, Feng
Qiu, Zhiwen
Chen, Yihua
Zhang, Yu
Huang, Zijian
Li, Nengxu
Niu, Xiuxiu
Zai, Huachao
Guo, Zhenyu
Liu, Huifen
Zhou, Huanping
description Inorganic perovskite solar cells (IPSCs) emerge as an ideal candidate for applications beyond terrestrial implementation due to their robustness. However, underlying mechanisms regarding their photovoltaic process at different temperatures remain unclear. Based on a stable absorber of CsPbI2.85(BrCl)0.15, considerable variation of corresponding device performance is revealed over temperature and further demonstrates a simple approach to an effective reduction of such variation. Interestingly, this absorber is found to be excitonic with poor carrier transport even at an ambient temperature of 285 K and below. With a novel device configuration of a PTB7‐th/perovskite bulk heterojunction, exciton dissociation and carrier extraction is facilitated. The resultant solar cell attains a best power conversion efficiency (PCE) of 17.2% with the fill factor of ≈84%, which represents the highest‐efficiency γ‐phase IPSCs reported to date. Importantly, this device is less sensitive to operation temperature, wherein the PCE variation over the temperature range from 210 to 360 K is 60% suppressed compared with the reference. The approach is effectively extended to other IPSCs with different photoactive phases, which may shed light on realizing highly efficient IPSCs for specific scenarios such as polar regions, near‐space, and exoplanet exploration. A bulk‐heterojunction strategy is developed to reduce the temperature sensitivity of inorganic perovskite solar cells to operation temperature, which may shed light on extending the application of perovskite solar cells for specific scenarios such as polar regions, near space, and exoplanet exploration.
doi_str_mv 10.1002/adma.202108357
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2616595918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635166352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3737-a434ce7161fb32125c0570cc7303c440a25b604c6429cc7b1777564909eecd1c3</originalsourceid><addsrcrecordid>eNqF0M9u1DAQBnALgehSuHJEkbhwyTL-Hx-XUuhKRfRQrkSOdwLeJvFiO4v2xiPwjDwJrrYUiQsXj2T95tPoI-Q5hSUFYK_tZrRLBoxCw6V-QBZUMloLMPIhWYDhsjZKNCfkSUpbADAK1GNywoVpaKPEgny-xnGH0eY54q8fP9dTwin57PdYnfe9dx6nXK2nEL_YybvqCmPYpxufsbr6GnLYhyFb71LVHao383BTXWAuZDtPLvswpafkUW-HhM_u5in59O78-uyivvz4fn22uqwd11zXVnDhUFNF-44zyqQDqcE5zYE7IcAy2SkQTglmym9HtdZSCQMG0W2o46fk1TF3F8O3GVNuR58cDoOdMMypZYoqaaShTaEv_6HbMMepXFcUl1SVhxW1PCoXQ0oR-3YX_WjjoaXQ3jbf3jbf3jdfFl7cxc7diJt7_qfqAswRfPcDHv4T167eflj9Df8NVT6Qtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635166352</pqid></control><display><type>article</type><title>Temperature‐Insensitive Efficient Inorganic Perovskite Photovoltaics by Bulk Heterojunctions</title><source>Access via Wiley Online Library</source><creator>Wang, Feng ; Qiu, Zhiwen ; Chen, Yihua ; Zhang, Yu ; Huang, Zijian ; Li, Nengxu ; Niu, Xiuxiu ; Zai, Huachao ; Guo, Zhenyu ; Liu, Huifen ; Zhou, Huanping</creator><creatorcontrib>Wang, Feng ; Qiu, Zhiwen ; Chen, Yihua ; Zhang, Yu ; Huang, Zijian ; Li, Nengxu ; Niu, Xiuxiu ; Zai, Huachao ; Guo, Zhenyu ; Liu, Huifen ; Zhou, Huanping</creatorcontrib><description>Inorganic perovskite solar cells (IPSCs) emerge as an ideal candidate for applications beyond terrestrial implementation due to their robustness. However, underlying mechanisms regarding their photovoltaic process at different temperatures remain unclear. Based on a stable absorber of CsPbI2.85(BrCl)0.15, considerable variation of corresponding device performance is revealed over temperature and further demonstrates a simple approach to an effective reduction of such variation. Interestingly, this absorber is found to be excitonic with poor carrier transport even at an ambient temperature of 285 K and below. With a novel device configuration of a PTB7‐th/perovskite bulk heterojunction, exciton dissociation and carrier extraction is facilitated. The resultant solar cell attains a best power conversion efficiency (PCE) of 17.2% with the fill factor of ≈84%, which represents the highest‐efficiency γ‐phase IPSCs reported to date. Importantly, this device is less sensitive to operation temperature, wherein the PCE variation over the temperature range from 210 to 360 K is 60% suppressed compared with the reference. The approach is effectively extended to other IPSCs with different photoactive phases, which may shed light on realizing highly efficient IPSCs for specific scenarios such as polar regions, near‐space, and exoplanet exploration. A bulk‐heterojunction strategy is developed to reduce the temperature sensitivity of inorganic perovskite solar cells to operation temperature, which may shed light on extending the application of perovskite solar cells for specific scenarios such as polar regions, near space, and exoplanet exploration.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202108357</identifier><identifier>PMID: 34981864</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorbers ; Ambient temperature ; carrier extraction ; Carrier transport ; Energy conversion efficiency ; Excitons ; Extrasolar planets ; Gamma phase ; Heterojunctions ; inorganic perovskite solar cells ; Perovskites ; Photovoltaic cells ; Polar environments ; Solar cells ; Temperature ; temperature‐insensitivity</subject><ispartof>Advanced materials (Weinheim), 2022-03, Vol.34 (9), p.e2108357-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3737-a434ce7161fb32125c0570cc7303c440a25b604c6429cc7b1777564909eecd1c3</citedby><cites>FETCH-LOGICAL-c3737-a434ce7161fb32125c0570cc7303c440a25b604c6429cc7b1777564909eecd1c3</cites><orcidid>0000-0002-0070-5540 ; 0000-0001-7626-3112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202108357$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202108357$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34981864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Qiu, Zhiwen</creatorcontrib><creatorcontrib>Chen, Yihua</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Huang, Zijian</creatorcontrib><creatorcontrib>Li, Nengxu</creatorcontrib><creatorcontrib>Niu, Xiuxiu</creatorcontrib><creatorcontrib>Zai, Huachao</creatorcontrib><creatorcontrib>Guo, Zhenyu</creatorcontrib><creatorcontrib>Liu, Huifen</creatorcontrib><creatorcontrib>Zhou, Huanping</creatorcontrib><title>Temperature‐Insensitive Efficient Inorganic Perovskite Photovoltaics by Bulk Heterojunctions</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Inorganic perovskite solar cells (IPSCs) emerge as an ideal candidate for applications beyond terrestrial implementation due to their robustness. However, underlying mechanisms regarding their photovoltaic process at different temperatures remain unclear. Based on a stable absorber of CsPbI2.85(BrCl)0.15, considerable variation of corresponding device performance is revealed over temperature and further demonstrates a simple approach to an effective reduction of such variation. Interestingly, this absorber is found to be excitonic with poor carrier transport even at an ambient temperature of 285 K and below. With a novel device configuration of a PTB7‐th/perovskite bulk heterojunction, exciton dissociation and carrier extraction is facilitated. The resultant solar cell attains a best power conversion efficiency (PCE) of 17.2% with the fill factor of ≈84%, which represents the highest‐efficiency γ‐phase IPSCs reported to date. Importantly, this device is less sensitive to operation temperature, wherein the PCE variation over the temperature range from 210 to 360 K is 60% suppressed compared with the reference. The approach is effectively extended to other IPSCs with different photoactive phases, which may shed light on realizing highly efficient IPSCs for specific scenarios such as polar regions, near‐space, and exoplanet exploration. A bulk‐heterojunction strategy is developed to reduce the temperature sensitivity of inorganic perovskite solar cells to operation temperature, which may shed light on extending the application of perovskite solar cells for specific scenarios such as polar regions, near space, and exoplanet exploration.</description><subject>Absorbers</subject><subject>Ambient temperature</subject><subject>carrier extraction</subject><subject>Carrier transport</subject><subject>Energy conversion efficiency</subject><subject>Excitons</subject><subject>Extrasolar planets</subject><subject>Gamma phase</subject><subject>Heterojunctions</subject><subject>inorganic perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Polar environments</subject><subject>Solar cells</subject><subject>Temperature</subject><subject>temperature‐insensitivity</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0M9u1DAQBnALgehSuHJEkbhwyTL-Hx-XUuhKRfRQrkSOdwLeJvFiO4v2xiPwjDwJrrYUiQsXj2T95tPoI-Q5hSUFYK_tZrRLBoxCw6V-QBZUMloLMPIhWYDhsjZKNCfkSUpbADAK1GNywoVpaKPEgny-xnGH0eY54q8fP9dTwin57PdYnfe9dx6nXK2nEL_YybvqCmPYpxufsbr6GnLYhyFb71LVHao383BTXWAuZDtPLvswpafkUW-HhM_u5in59O78-uyivvz4fn22uqwd11zXVnDhUFNF-44zyqQDqcE5zYE7IcAy2SkQTglmym9HtdZSCQMG0W2o46fk1TF3F8O3GVNuR58cDoOdMMypZYoqaaShTaEv_6HbMMepXFcUl1SVhxW1PCoXQ0oR-3YX_WjjoaXQ3jbf3jbf3jdfFl7cxc7diJt7_qfqAswRfPcDHv4T167eflj9Df8NVT6Qtg</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Wang, Feng</creator><creator>Qiu, Zhiwen</creator><creator>Chen, Yihua</creator><creator>Zhang, Yu</creator><creator>Huang, Zijian</creator><creator>Li, Nengxu</creator><creator>Niu, Xiuxiu</creator><creator>Zai, Huachao</creator><creator>Guo, Zhenyu</creator><creator>Liu, Huifen</creator><creator>Zhou, Huanping</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0070-5540</orcidid><orcidid>https://orcid.org/0000-0001-7626-3112</orcidid></search><sort><creationdate>20220301</creationdate><title>Temperature‐Insensitive Efficient Inorganic Perovskite Photovoltaics by Bulk Heterojunctions</title><author>Wang, Feng ; Qiu, Zhiwen ; Chen, Yihua ; Zhang, Yu ; Huang, Zijian ; Li, Nengxu ; Niu, Xiuxiu ; Zai, Huachao ; Guo, Zhenyu ; Liu, Huifen ; Zhou, Huanping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3737-a434ce7161fb32125c0570cc7303c440a25b604c6429cc7b1777564909eecd1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorbers</topic><topic>Ambient temperature</topic><topic>carrier extraction</topic><topic>Carrier transport</topic><topic>Energy conversion efficiency</topic><topic>Excitons</topic><topic>Extrasolar planets</topic><topic>Gamma phase</topic><topic>Heterojunctions</topic><topic>inorganic perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Polar environments</topic><topic>Solar cells</topic><topic>Temperature</topic><topic>temperature‐insensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Qiu, Zhiwen</creatorcontrib><creatorcontrib>Chen, Yihua</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Huang, Zijian</creatorcontrib><creatorcontrib>Li, Nengxu</creatorcontrib><creatorcontrib>Niu, Xiuxiu</creatorcontrib><creatorcontrib>Zai, Huachao</creatorcontrib><creatorcontrib>Guo, Zhenyu</creatorcontrib><creatorcontrib>Liu, Huifen</creatorcontrib><creatorcontrib>Zhou, Huanping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Feng</au><au>Qiu, Zhiwen</au><au>Chen, Yihua</au><au>Zhang, Yu</au><au>Huang, Zijian</au><au>Li, Nengxu</au><au>Niu, Xiuxiu</au><au>Zai, Huachao</au><au>Guo, Zhenyu</au><au>Liu, Huifen</au><au>Zhou, Huanping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature‐Insensitive Efficient Inorganic Perovskite Photovoltaics by Bulk Heterojunctions</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>34</volume><issue>9</issue><spage>e2108357</spage><epage>n/a</epage><pages>e2108357-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Inorganic perovskite solar cells (IPSCs) emerge as an ideal candidate for applications beyond terrestrial implementation due to their robustness. However, underlying mechanisms regarding their photovoltaic process at different temperatures remain unclear. Based on a stable absorber of CsPbI2.85(BrCl)0.15, considerable variation of corresponding device performance is revealed over temperature and further demonstrates a simple approach to an effective reduction of such variation. Interestingly, this absorber is found to be excitonic with poor carrier transport even at an ambient temperature of 285 K and below. With a novel device configuration of a PTB7‐th/perovskite bulk heterojunction, exciton dissociation and carrier extraction is facilitated. The resultant solar cell attains a best power conversion efficiency (PCE) of 17.2% with the fill factor of ≈84%, which represents the highest‐efficiency γ‐phase IPSCs reported to date. Importantly, this device is less sensitive to operation temperature, wherein the PCE variation over the temperature range from 210 to 360 K is 60% suppressed compared with the reference. The approach is effectively extended to other IPSCs with different photoactive phases, which may shed light on realizing highly efficient IPSCs for specific scenarios such as polar regions, near‐space, and exoplanet exploration. A bulk‐heterojunction strategy is developed to reduce the temperature sensitivity of inorganic perovskite solar cells to operation temperature, which may shed light on extending the application of perovskite solar cells for specific scenarios such as polar regions, near space, and exoplanet exploration.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34981864</pmid><doi>10.1002/adma.202108357</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0070-5540</orcidid><orcidid>https://orcid.org/0000-0001-7626-3112</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-03, Vol.34 (9), p.e2108357-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2616595918
source Access via Wiley Online Library
subjects Absorbers
Ambient temperature
carrier extraction
Carrier transport
Energy conversion efficiency
Excitons
Extrasolar planets
Gamma phase
Heterojunctions
inorganic perovskite solar cells
Perovskites
Photovoltaic cells
Polar environments
Solar cells
Temperature
temperature‐insensitivity
title Temperature‐Insensitive Efficient Inorganic Perovskite Photovoltaics by Bulk Heterojunctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%E2%80%90Insensitive%20Efficient%20Inorganic%20Perovskite%20Photovoltaics%20by%20Bulk%20Heterojunctions&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Feng&rft.date=2022-03-01&rft.volume=34&rft.issue=9&rft.spage=e2108357&rft.epage=n/a&rft.pages=e2108357-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202108357&rft_dat=%3Cproquest_cross%3E2635166352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635166352&rft_id=info:pmid/34981864&rfr_iscdi=true