A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics

Stretchable electronics incorporating critical sensing, data transmission, display and powering functionalities, is crucial to emerging wearable healthcare applications. To date, methods to achieve stretchability of individual functional devices have been extensively investigated. However, integrati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-02, Vol.34 (7), p.e2101339-n/a
Hauptverfasser: Zhu, Ming, Ji, Shaobo, Luo, Yifei, Zhang, Feilong, Liu, Zhihua, Wang, Changxian, Lv, Zhisheng, Jiang, Ying, Wang, Ming, Cui, Zequn, Li, Guanglin, Jiang, Longtao, Liu, Zhiyuan, Chen, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page e2101339
container_title Advanced materials (Weinheim)
container_volume 34
creator Zhu, Ming
Ji, Shaobo
Luo, Yifei
Zhang, Feilong
Liu, Zhihua
Wang, Changxian
Lv, Zhisheng
Jiang, Ying
Wang, Ming
Cui, Zequn
Li, Guanglin
Jiang, Longtao
Liu, Zhiyuan
Chen, Xiaodong
description Stretchable electronics incorporating critical sensing, data transmission, display and powering functionalities, is crucial to emerging wearable healthcare applications. To date, methods to achieve stretchability of individual functional devices have been extensively investigated. However, integration strategies of these stretchable devices to achieve all‐stretchable systems are still under exploration, in which the reliable stretchable interconnection is a key element. Here, solderless stretchable interconnections based on mechanically interlocking microbridges are developed to realize the assembly of individual stretchable devices onto soft patternable circuits toward multifunctional all‐stretchable platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through both conductive microbridges and selectively distributed adhesive polymer. Consequently, enhanced stretchability up to a strain of 35% (R/R0 ≤ 5) is shown, compared with conventional solder‐assisted connections which lose electrical conduction at a strain of less than 5% (R/R0 ≈ 30). As a proof of concept, a self‐powered all‐stretchable data‐acquisition platform is fabricated by surface mounting a stretchable strain sensor and a supercapacitor onto a soft circuit through solderless interconnections. This solderless interconnecting strategy for surface‐mountable devices can be utilized as a valuable technology for the integration of stretchable devices to achieve all‐soft multifunctional systems. Solderless stretchable interconnections (SLSIs) are developed to realize the assembly of individual soft devices toward multifunctional all‐stretchable integrated platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through regional functionality. SLSIs show promising stretchability up to a strain of 35% (R/R0 ≤ 5) and can be adopted to achieve an all‐stretchable self‐powered data acquisition platform.
doi_str_mv 10.1002/adma.202101339
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2616286311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616286311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-7abf00ff01b21782e0b12af92074662232251b2486727a85610d28d14ed313b73</originalsourceid><addsrcrecordid>eNqFkD1v2zAQQImiQeOkXTsGBLpkkXNHUpQ4us4nEKND21mgpJOrhBZTUkrgfx8azgfQpROHe_dwfIx9RZgjgDiz7cbOBQgElNJ8YDPMBWYKTP6RzcDIPDNalYfsKMY7ADAa9Cd2KJUpSgQ1Y3bBV9T8sUPfWOe2_GYYKTjf3PfDmv8cgx1pveXfbaSW-4Ev_dBOzdg_El_1TfB16Ns1Rd75sKNpTKraEb9w1IzBJ2v8zA466yJ9eXmP2e_Li1_L6-z2x9XNcnGbNQqlyQpbdwBdB1gLLEpBUKOwnRFQKK2FkELkaaRKXYjClrlGaEXZoqJWoqwLecxO996H4P9OFMdq08eGnLMD-SlWQqMWpZaICf32D3rnpzCk6xIljASZa5Wo-Z5K_4wxUFc9hH5jw7ZCqHbxq1386i1-Wjh50U71hto3_LV2AsweeOodbf-jqxbnq8W7_BleiI7n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629303564</pqid></control><display><type>article</type><title>A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zhu, Ming ; Ji, Shaobo ; Luo, Yifei ; Zhang, Feilong ; Liu, Zhihua ; Wang, Changxian ; Lv, Zhisheng ; Jiang, Ying ; Wang, Ming ; Cui, Zequn ; Li, Guanglin ; Jiang, Longtao ; Liu, Zhiyuan ; Chen, Xiaodong</creator><creatorcontrib>Zhu, Ming ; Ji, Shaobo ; Luo, Yifei ; Zhang, Feilong ; Liu, Zhihua ; Wang, Changxian ; Lv, Zhisheng ; Jiang, Ying ; Wang, Ming ; Cui, Zequn ; Li, Guanglin ; Jiang, Longtao ; Liu, Zhiyuan ; Chen, Xiaodong</creatorcontrib><description>Stretchable electronics incorporating critical sensing, data transmission, display and powering functionalities, is crucial to emerging wearable healthcare applications. To date, methods to achieve stretchability of individual functional devices have been extensively investigated. However, integration strategies of these stretchable devices to achieve all‐stretchable systems are still under exploration, in which the reliable stretchable interconnection is a key element. Here, solderless stretchable interconnections based on mechanically interlocking microbridges are developed to realize the assembly of individual stretchable devices onto soft patternable circuits toward multifunctional all‐stretchable platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through both conductive microbridges and selectively distributed adhesive polymer. Consequently, enhanced stretchability up to a strain of 35% (R/R0 ≤ 5) is shown, compared with conventional solder‐assisted connections which lose electrical conduction at a strain of less than 5% (R/R0 ≈ 30). As a proof of concept, a self‐powered all‐stretchable data‐acquisition platform is fabricated by surface mounting a stretchable strain sensor and a supercapacitor onto a soft circuit through solderless interconnections. This solderless interconnecting strategy for surface‐mountable devices can be utilized as a valuable technology for the integration of stretchable devices to achieve all‐soft multifunctional systems. Solderless stretchable interconnections (SLSIs) are developed to realize the assembly of individual soft devices toward multifunctional all‐stretchable integrated platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through regional functionality. SLSIs show promising stretchability up to a strain of 35% (R/R0 ≤ 5) and can be adopted to achieve an all‐stretchable self‐powered data acquisition platform.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202101339</identifier><identifier>PMID: 34978104</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>all‐stretchable platforms ; Circuits ; Data transmission ; Devices ; Electrical conduction ; Electronics ; healthcare electronics ; Interconnections ; Interlayers ; interlocking structures ; Locking ; Materials science ; Stretchability ; stretchable electronics packaging ; stretchable interconnections</subject><ispartof>Advanced materials (Weinheim), 2022-02, Vol.34 (7), p.e2101339-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-7abf00ff01b21782e0b12af92074662232251b2486727a85610d28d14ed313b73</citedby><cites>FETCH-LOGICAL-c4139-7abf00ff01b21782e0b12af92074662232251b2486727a85610d28d14ed313b73</cites><orcidid>0000-0002-3312-1664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202101339$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202101339$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34978104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Ming</creatorcontrib><creatorcontrib>Ji, Shaobo</creatorcontrib><creatorcontrib>Luo, Yifei</creatorcontrib><creatorcontrib>Zhang, Feilong</creatorcontrib><creatorcontrib>Liu, Zhihua</creatorcontrib><creatorcontrib>Wang, Changxian</creatorcontrib><creatorcontrib>Lv, Zhisheng</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Cui, Zequn</creatorcontrib><creatorcontrib>Li, Guanglin</creatorcontrib><creatorcontrib>Jiang, Longtao</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><title>A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Stretchable electronics incorporating critical sensing, data transmission, display and powering functionalities, is crucial to emerging wearable healthcare applications. To date, methods to achieve stretchability of individual functional devices have been extensively investigated. However, integration strategies of these stretchable devices to achieve all‐stretchable systems are still under exploration, in which the reliable stretchable interconnection is a key element. Here, solderless stretchable interconnections based on mechanically interlocking microbridges are developed to realize the assembly of individual stretchable devices onto soft patternable circuits toward multifunctional all‐stretchable platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through both conductive microbridges and selectively distributed adhesive polymer. Consequently, enhanced stretchability up to a strain of 35% (R/R0 ≤ 5) is shown, compared with conventional solder‐assisted connections which lose electrical conduction at a strain of less than 5% (R/R0 ≈ 30). As a proof of concept, a self‐powered all‐stretchable data‐acquisition platform is fabricated by surface mounting a stretchable strain sensor and a supercapacitor onto a soft circuit through solderless interconnections. This solderless interconnecting strategy for surface‐mountable devices can be utilized as a valuable technology for the integration of stretchable devices to achieve all‐soft multifunctional systems. Solderless stretchable interconnections (SLSIs) are developed to realize the assembly of individual soft devices toward multifunctional all‐stretchable integrated platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through regional functionality. SLSIs show promising stretchability up to a strain of 35% (R/R0 ≤ 5) and can be adopted to achieve an all‐stretchable self‐powered data acquisition platform.</description><subject>all‐stretchable platforms</subject><subject>Circuits</subject><subject>Data transmission</subject><subject>Devices</subject><subject>Electrical conduction</subject><subject>Electronics</subject><subject>healthcare electronics</subject><subject>Interconnections</subject><subject>Interlayers</subject><subject>interlocking structures</subject><subject>Locking</subject><subject>Materials science</subject><subject>Stretchability</subject><subject>stretchable electronics packaging</subject><subject>stretchable interconnections</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkD1v2zAQQImiQeOkXTsGBLpkkXNHUpQ4us4nEKND21mgpJOrhBZTUkrgfx8azgfQpROHe_dwfIx9RZgjgDiz7cbOBQgElNJ8YDPMBWYKTP6RzcDIPDNalYfsKMY7ADAa9Cd2KJUpSgQ1Y3bBV9T8sUPfWOe2_GYYKTjf3PfDmv8cgx1pveXfbaSW-4Ev_dBOzdg_El_1TfB16Ns1Rd75sKNpTKraEb9w1IzBJ2v8zA466yJ9eXmP2e_Li1_L6-z2x9XNcnGbNQqlyQpbdwBdB1gLLEpBUKOwnRFQKK2FkELkaaRKXYjClrlGaEXZoqJWoqwLecxO996H4P9OFMdq08eGnLMD-SlWQqMWpZaICf32D3rnpzCk6xIljASZa5Wo-Z5K_4wxUFc9hH5jw7ZCqHbxq1386i1-Wjh50U71hto3_LV2AsweeOodbf-jqxbnq8W7_BleiI7n</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Zhu, Ming</creator><creator>Ji, Shaobo</creator><creator>Luo, Yifei</creator><creator>Zhang, Feilong</creator><creator>Liu, Zhihua</creator><creator>Wang, Changxian</creator><creator>Lv, Zhisheng</creator><creator>Jiang, Ying</creator><creator>Wang, Ming</creator><creator>Cui, Zequn</creator><creator>Li, Guanglin</creator><creator>Jiang, Longtao</creator><creator>Liu, Zhiyuan</creator><creator>Chen, Xiaodong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3312-1664</orcidid></search><sort><creationdate>20220201</creationdate><title>A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics</title><author>Zhu, Ming ; Ji, Shaobo ; Luo, Yifei ; Zhang, Feilong ; Liu, Zhihua ; Wang, Changxian ; Lv, Zhisheng ; Jiang, Ying ; Wang, Ming ; Cui, Zequn ; Li, Guanglin ; Jiang, Longtao ; Liu, Zhiyuan ; Chen, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-7abf00ff01b21782e0b12af92074662232251b2486727a85610d28d14ed313b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>all‐stretchable platforms</topic><topic>Circuits</topic><topic>Data transmission</topic><topic>Devices</topic><topic>Electrical conduction</topic><topic>Electronics</topic><topic>healthcare electronics</topic><topic>Interconnections</topic><topic>Interlayers</topic><topic>interlocking structures</topic><topic>Locking</topic><topic>Materials science</topic><topic>Stretchability</topic><topic>stretchable electronics packaging</topic><topic>stretchable interconnections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Ming</creatorcontrib><creatorcontrib>Ji, Shaobo</creatorcontrib><creatorcontrib>Luo, Yifei</creatorcontrib><creatorcontrib>Zhang, Feilong</creatorcontrib><creatorcontrib>Liu, Zhihua</creatorcontrib><creatorcontrib>Wang, Changxian</creatorcontrib><creatorcontrib>Lv, Zhisheng</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Cui, Zequn</creatorcontrib><creatorcontrib>Li, Guanglin</creatorcontrib><creatorcontrib>Jiang, Longtao</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Ming</au><au>Ji, Shaobo</au><au>Luo, Yifei</au><au>Zhang, Feilong</au><au>Liu, Zhihua</au><au>Wang, Changxian</au><au>Lv, Zhisheng</au><au>Jiang, Ying</au><au>Wang, Ming</au><au>Cui, Zequn</au><au>Li, Guanglin</au><au>Jiang, Longtao</au><au>Liu, Zhiyuan</au><au>Chen, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>34</volume><issue>7</issue><spage>e2101339</spage><epage>n/a</epage><pages>e2101339-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Stretchable electronics incorporating critical sensing, data transmission, display and powering functionalities, is crucial to emerging wearable healthcare applications. To date, methods to achieve stretchability of individual functional devices have been extensively investigated. However, integration strategies of these stretchable devices to achieve all‐stretchable systems are still under exploration, in which the reliable stretchable interconnection is a key element. Here, solderless stretchable interconnections based on mechanically interlocking microbridges are developed to realize the assembly of individual stretchable devices onto soft patternable circuits toward multifunctional all‐stretchable platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through both conductive microbridges and selectively distributed adhesive polymer. Consequently, enhanced stretchability up to a strain of 35% (R/R0 ≤ 5) is shown, compared with conventional solder‐assisted connections which lose electrical conduction at a strain of less than 5% (R/R0 ≈ 30). As a proof of concept, a self‐powered all‐stretchable data‐acquisition platform is fabricated by surface mounting a stretchable strain sensor and a supercapacitor onto a soft circuit through solderless interconnections. This solderless interconnecting strategy for surface‐mountable devices can be utilized as a valuable technology for the integration of stretchable devices to achieve all‐soft multifunctional systems. Solderless stretchable interconnections (SLSIs) are developed to realize the assembly of individual soft devices toward multifunctional all‐stretchable integrated platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through regional functionality. SLSIs show promising stretchability up to a strain of 35% (R/R0 ≤ 5) and can be adopted to achieve an all‐stretchable self‐powered data acquisition platform.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34978104</pmid><doi>10.1002/adma.202101339</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3312-1664</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-02, Vol.34 (7), p.e2101339-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2616286311
source Wiley Online Library - AutoHoldings Journals
subjects all‐stretchable platforms
Circuits
Data transmission
Devices
Electrical conduction
Electronics
healthcare electronics
Interconnections
Interlayers
interlocking structures
Locking
Materials science
Stretchability
stretchable electronics packaging
stretchable interconnections
title A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mechanically%20Interlocking%20Strategy%20Based%20on%20Conductive%20Microbridges%20for%20Stretchable%20Electronics&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhu,%20Ming&rft.date=2022-02-01&rft.volume=34&rft.issue=7&rft.spage=e2101339&rft.epage=n/a&rft.pages=e2101339-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202101339&rft_dat=%3Cproquest_cross%3E2616286311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629303564&rft_id=info:pmid/34978104&rfr_iscdi=true