A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics
Stretchable electronics incorporating critical sensing, data transmission, display and powering functionalities, is crucial to emerging wearable healthcare applications. To date, methods to achieve stretchability of individual functional devices have been extensively investigated. However, integrati...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-02, Vol.34 (7), p.e2101339-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | e2101339 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Zhu, Ming Ji, Shaobo Luo, Yifei Zhang, Feilong Liu, Zhihua Wang, Changxian Lv, Zhisheng Jiang, Ying Wang, Ming Cui, Zequn Li, Guanglin Jiang, Longtao Liu, Zhiyuan Chen, Xiaodong |
description | Stretchable electronics incorporating critical sensing, data transmission, display and powering functionalities, is crucial to emerging wearable healthcare applications. To date, methods to achieve stretchability of individual functional devices have been extensively investigated. However, integration strategies of these stretchable devices to achieve all‐stretchable systems are still under exploration, in which the reliable stretchable interconnection is a key element. Here, solderless stretchable interconnections based on mechanically interlocking microbridges are developed to realize the assembly of individual stretchable devices onto soft patternable circuits toward multifunctional all‐stretchable platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through both conductive microbridges and selectively distributed adhesive polymer. Consequently, enhanced stretchability up to a strain of 35% (R/R0 ≤ 5) is shown, compared with conventional solder‐assisted connections which lose electrical conduction at a strain of less than 5% (R/R0 ≈ 30). As a proof of concept, a self‐powered all‐stretchable data‐acquisition platform is fabricated by surface mounting a stretchable strain sensor and a supercapacitor onto a soft circuit through solderless interconnections. This solderless interconnecting strategy for surface‐mountable devices can be utilized as a valuable technology for the integration of stretchable devices to achieve all‐soft multifunctional systems.
Solderless stretchable interconnections (SLSIs) are developed to realize the assembly of individual soft devices toward multifunctional all‐stretchable integrated platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through regional functionality. SLSIs show promising stretchability up to a strain of 35% (R/R0 ≤ 5) and can be adopted to achieve an all‐stretchable self‐powered data acquisition platform. |
doi_str_mv | 10.1002/adma.202101339 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2616286311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616286311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-7abf00ff01b21782e0b12af92074662232251b2486727a85610d28d14ed313b73</originalsourceid><addsrcrecordid>eNqFkD1v2zAQQImiQeOkXTsGBLpkkXNHUpQ4us4nEKND21mgpJOrhBZTUkrgfx8azgfQpROHe_dwfIx9RZgjgDiz7cbOBQgElNJ8YDPMBWYKTP6RzcDIPDNalYfsKMY7ADAa9Cd2KJUpSgQ1Y3bBV9T8sUPfWOe2_GYYKTjf3PfDmv8cgx1pveXfbaSW-4Ev_dBOzdg_El_1TfB16Ns1Rd75sKNpTKraEb9w1IzBJ2v8zA466yJ9eXmP2e_Li1_L6-z2x9XNcnGbNQqlyQpbdwBdB1gLLEpBUKOwnRFQKK2FkELkaaRKXYjClrlGaEXZoqJWoqwLecxO996H4P9OFMdq08eGnLMD-SlWQqMWpZaICf32D3rnpzCk6xIljASZa5Wo-Z5K_4wxUFc9hH5jw7ZCqHbxq1386i1-Wjh50U71hto3_LV2AsweeOodbf-jqxbnq8W7_BleiI7n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629303564</pqid></control><display><type>article</type><title>A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zhu, Ming ; Ji, Shaobo ; Luo, Yifei ; Zhang, Feilong ; Liu, Zhihua ; Wang, Changxian ; Lv, Zhisheng ; Jiang, Ying ; Wang, Ming ; Cui, Zequn ; Li, Guanglin ; Jiang, Longtao ; Liu, Zhiyuan ; Chen, Xiaodong</creator><creatorcontrib>Zhu, Ming ; Ji, Shaobo ; Luo, Yifei ; Zhang, Feilong ; Liu, Zhihua ; Wang, Changxian ; Lv, Zhisheng ; Jiang, Ying ; Wang, Ming ; Cui, Zequn ; Li, Guanglin ; Jiang, Longtao ; Liu, Zhiyuan ; Chen, Xiaodong</creatorcontrib><description>Stretchable electronics incorporating critical sensing, data transmission, display and powering functionalities, is crucial to emerging wearable healthcare applications. To date, methods to achieve stretchability of individual functional devices have been extensively investigated. However, integration strategies of these stretchable devices to achieve all‐stretchable systems are still under exploration, in which the reliable stretchable interconnection is a key element. Here, solderless stretchable interconnections based on mechanically interlocking microbridges are developed to realize the assembly of individual stretchable devices onto soft patternable circuits toward multifunctional all‐stretchable platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through both conductive microbridges and selectively distributed adhesive polymer. Consequently, enhanced stretchability up to a strain of 35% (R/R0 ≤ 5) is shown, compared with conventional solder‐assisted connections which lose electrical conduction at a strain of less than 5% (R/R0 ≈ 30). As a proof of concept, a self‐powered all‐stretchable data‐acquisition platform is fabricated by surface mounting a stretchable strain sensor and a supercapacitor onto a soft circuit through solderless interconnections. This solderless interconnecting strategy for surface‐mountable devices can be utilized as a valuable technology for the integration of stretchable devices to achieve all‐soft multifunctional systems.
Solderless stretchable interconnections (SLSIs) are developed to realize the assembly of individual soft devices toward multifunctional all‐stretchable integrated platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through regional functionality. SLSIs show promising stretchability up to a strain of 35% (R/R0 ≤ 5) and can be adopted to achieve an all‐stretchable self‐powered data acquisition platform.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202101339</identifier><identifier>PMID: 34978104</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>all‐stretchable platforms ; Circuits ; Data transmission ; Devices ; Electrical conduction ; Electronics ; healthcare electronics ; Interconnections ; Interlayers ; interlocking structures ; Locking ; Materials science ; Stretchability ; stretchable electronics packaging ; stretchable interconnections</subject><ispartof>Advanced materials (Weinheim), 2022-02, Vol.34 (7), p.e2101339-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-7abf00ff01b21782e0b12af92074662232251b2486727a85610d28d14ed313b73</citedby><cites>FETCH-LOGICAL-c4139-7abf00ff01b21782e0b12af92074662232251b2486727a85610d28d14ed313b73</cites><orcidid>0000-0002-3312-1664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202101339$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202101339$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34978104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Ming</creatorcontrib><creatorcontrib>Ji, Shaobo</creatorcontrib><creatorcontrib>Luo, Yifei</creatorcontrib><creatorcontrib>Zhang, Feilong</creatorcontrib><creatorcontrib>Liu, Zhihua</creatorcontrib><creatorcontrib>Wang, Changxian</creatorcontrib><creatorcontrib>Lv, Zhisheng</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Cui, Zequn</creatorcontrib><creatorcontrib>Li, Guanglin</creatorcontrib><creatorcontrib>Jiang, Longtao</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><title>A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Stretchable electronics incorporating critical sensing, data transmission, display and powering functionalities, is crucial to emerging wearable healthcare applications. To date, methods to achieve stretchability of individual functional devices have been extensively investigated. However, integration strategies of these stretchable devices to achieve all‐stretchable systems are still under exploration, in which the reliable stretchable interconnection is a key element. Here, solderless stretchable interconnections based on mechanically interlocking microbridges are developed to realize the assembly of individual stretchable devices onto soft patternable circuits toward multifunctional all‐stretchable platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through both conductive microbridges and selectively distributed adhesive polymer. Consequently, enhanced stretchability up to a strain of 35% (R/R0 ≤ 5) is shown, compared with conventional solder‐assisted connections which lose electrical conduction at a strain of less than 5% (R/R0 ≈ 30). As a proof of concept, a self‐powered all‐stretchable data‐acquisition platform is fabricated by surface mounting a stretchable strain sensor and a supercapacitor onto a soft circuit through solderless interconnections. This solderless interconnecting strategy for surface‐mountable devices can be utilized as a valuable technology for the integration of stretchable devices to achieve all‐soft multifunctional systems.
Solderless stretchable interconnections (SLSIs) are developed to realize the assembly of individual soft devices toward multifunctional all‐stretchable integrated platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through regional functionality. SLSIs show promising stretchability up to a strain of 35% (R/R0 ≤ 5) and can be adopted to achieve an all‐stretchable self‐powered data acquisition platform.</description><subject>all‐stretchable platforms</subject><subject>Circuits</subject><subject>Data transmission</subject><subject>Devices</subject><subject>Electrical conduction</subject><subject>Electronics</subject><subject>healthcare electronics</subject><subject>Interconnections</subject><subject>Interlayers</subject><subject>interlocking structures</subject><subject>Locking</subject><subject>Materials science</subject><subject>Stretchability</subject><subject>stretchable electronics packaging</subject><subject>stretchable interconnections</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkD1v2zAQQImiQeOkXTsGBLpkkXNHUpQ4us4nEKND21mgpJOrhBZTUkrgfx8azgfQpROHe_dwfIx9RZgjgDiz7cbOBQgElNJ8YDPMBWYKTP6RzcDIPDNalYfsKMY7ADAa9Cd2KJUpSgQ1Y3bBV9T8sUPfWOe2_GYYKTjf3PfDmv8cgx1pveXfbaSW-4Ev_dBOzdg_El_1TfB16Ns1Rd75sKNpTKraEb9w1IzBJ2v8zA466yJ9eXmP2e_Li1_L6-z2x9XNcnGbNQqlyQpbdwBdB1gLLEpBUKOwnRFQKK2FkELkaaRKXYjClrlGaEXZoqJWoqwLecxO996H4P9OFMdq08eGnLMD-SlWQqMWpZaICf32D3rnpzCk6xIljASZa5Wo-Z5K_4wxUFc9hH5jw7ZCqHbxq1386i1-Wjh50U71hto3_LV2AsweeOodbf-jqxbnq8W7_BleiI7n</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Zhu, Ming</creator><creator>Ji, Shaobo</creator><creator>Luo, Yifei</creator><creator>Zhang, Feilong</creator><creator>Liu, Zhihua</creator><creator>Wang, Changxian</creator><creator>Lv, Zhisheng</creator><creator>Jiang, Ying</creator><creator>Wang, Ming</creator><creator>Cui, Zequn</creator><creator>Li, Guanglin</creator><creator>Jiang, Longtao</creator><creator>Liu, Zhiyuan</creator><creator>Chen, Xiaodong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3312-1664</orcidid></search><sort><creationdate>20220201</creationdate><title>A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics</title><author>Zhu, Ming ; Ji, Shaobo ; Luo, Yifei ; Zhang, Feilong ; Liu, Zhihua ; Wang, Changxian ; Lv, Zhisheng ; Jiang, Ying ; Wang, Ming ; Cui, Zequn ; Li, Guanglin ; Jiang, Longtao ; Liu, Zhiyuan ; Chen, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-7abf00ff01b21782e0b12af92074662232251b2486727a85610d28d14ed313b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>all‐stretchable platforms</topic><topic>Circuits</topic><topic>Data transmission</topic><topic>Devices</topic><topic>Electrical conduction</topic><topic>Electronics</topic><topic>healthcare electronics</topic><topic>Interconnections</topic><topic>Interlayers</topic><topic>interlocking structures</topic><topic>Locking</topic><topic>Materials science</topic><topic>Stretchability</topic><topic>stretchable electronics packaging</topic><topic>stretchable interconnections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Ming</creatorcontrib><creatorcontrib>Ji, Shaobo</creatorcontrib><creatorcontrib>Luo, Yifei</creatorcontrib><creatorcontrib>Zhang, Feilong</creatorcontrib><creatorcontrib>Liu, Zhihua</creatorcontrib><creatorcontrib>Wang, Changxian</creatorcontrib><creatorcontrib>Lv, Zhisheng</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Wang, Ming</creatorcontrib><creatorcontrib>Cui, Zequn</creatorcontrib><creatorcontrib>Li, Guanglin</creatorcontrib><creatorcontrib>Jiang, Longtao</creatorcontrib><creatorcontrib>Liu, Zhiyuan</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Ming</au><au>Ji, Shaobo</au><au>Luo, Yifei</au><au>Zhang, Feilong</au><au>Liu, Zhihua</au><au>Wang, Changxian</au><au>Lv, Zhisheng</au><au>Jiang, Ying</au><au>Wang, Ming</au><au>Cui, Zequn</au><au>Li, Guanglin</au><au>Jiang, Longtao</au><au>Liu, Zhiyuan</au><au>Chen, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>34</volume><issue>7</issue><spage>e2101339</spage><epage>n/a</epage><pages>e2101339-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Stretchable electronics incorporating critical sensing, data transmission, display and powering functionalities, is crucial to emerging wearable healthcare applications. To date, methods to achieve stretchability of individual functional devices have been extensively investigated. However, integration strategies of these stretchable devices to achieve all‐stretchable systems are still under exploration, in which the reliable stretchable interconnection is a key element. Here, solderless stretchable interconnections based on mechanically interlocking microbridges are developed to realize the assembly of individual stretchable devices onto soft patternable circuits toward multifunctional all‐stretchable platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through both conductive microbridges and selectively distributed adhesive polymer. Consequently, enhanced stretchability up to a strain of 35% (R/R0 ≤ 5) is shown, compared with conventional solder‐assisted connections which lose electrical conduction at a strain of less than 5% (R/R0 ≈ 30). As a proof of concept, a self‐powered all‐stretchable data‐acquisition platform is fabricated by surface mounting a stretchable strain sensor and a supercapacitor onto a soft circuit through solderless interconnections. This solderless interconnecting strategy for surface‐mountable devices can be utilized as a valuable technology for the integration of stretchable devices to achieve all‐soft multifunctional systems.
Solderless stretchable interconnections (SLSIs) are developed to realize the assembly of individual soft devices toward multifunctional all‐stretchable integrated platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through regional functionality. SLSIs show promising stretchability up to a strain of 35% (R/R0 ≤ 5) and can be adopted to achieve an all‐stretchable self‐powered data acquisition platform.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34978104</pmid><doi>10.1002/adma.202101339</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3312-1664</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-02, Vol.34 (7), p.e2101339-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2616286311 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | all‐stretchable platforms Circuits Data transmission Devices Electrical conduction Electronics healthcare electronics Interconnections Interlayers interlocking structures Locking Materials science Stretchability stretchable electronics packaging stretchable interconnections |
title | A Mechanically Interlocking Strategy Based on Conductive Microbridges for Stretchable Electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mechanically%20Interlocking%20Strategy%20Based%20on%20Conductive%20Microbridges%20for%20Stretchable%20Electronics&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhu,%20Ming&rft.date=2022-02-01&rft.volume=34&rft.issue=7&rft.spage=e2101339&rft.epage=n/a&rft.pages=e2101339-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202101339&rft_dat=%3Cproquest_cross%3E2616286311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629303564&rft_id=info:pmid/34978104&rfr_iscdi=true |