Fault diagnosis for train plug door using weighted fractional wavelet packet decomposition energy entropy

•Signal reconstruction method based on hybrid criteria for IMFs selection  is proposed.•Novel efficient feature named WFWPDE is developed.•Synchronous optimization strategy is proposed to optimize weights and SVM. As the passage for passengers to get on and off, train plug doors directly affect the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Accident analysis and prevention 2022-03, Vol.166, p.106549-106549, Article 106549
Hauptverfasser: Sun, Yongkui, Cao, Yuan, Li, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106549
container_issue
container_start_page 106549
container_title Accident analysis and prevention
container_volume 166
creator Sun, Yongkui
Cao, Yuan
Li, Peng
description •Signal reconstruction method based on hybrid criteria for IMFs selection  is proposed.•Novel efficient feature named WFWPDE is developed.•Synchronous optimization strategy is proposed to optimize weights and SVM. As the passage for passengers to get on and off, train plug doors directly affect the operation efficiency of the train and the personal safety of passengers. This paper proposes a non-contact fault diagnosis method for train plug doors based on sound signals. First, empirical mode decomposition (EMD) is utilized to process the raw sound signals. A signal reconstruction method by selecting intrinsic mode functions (IMFs) using hybrid selection criteria is then proposed. Second, novel feature named weighted fractional wavelet packet decomposition energy entropy (WFWPDE) is developed by introducing the idea of fractional calculus and weight to wavelet packet decomposition energy entropy (WDPE). Third, a synchronous optimization strategy is proposed to optimize the weights and hyperparameters of support vector machine (SVM) synchronously. Finally, the superiority and feasibility of the proposed method are verified on field-collected data. By comparing with different fault diagnosis methods, the proposed method performs best on fault diagnosis of train plug doors, with accuracy of 97.87%.
doi_str_mv 10.1016/j.aap.2021.106549
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2616279067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001457521005807</els_id><sourcerecordid>2616279067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-bd14aad2e4f76de4e4a75ffb5eeaacefd09d98c7ce1591e82dc2daf54bc8425d3</originalsourceid><addsrcrecordid>eNp9kEFv1DAUhC0EokvLD-BS-cgli-2140Q9VVVLkSpxoWfrrf0cvGTj1HZa7b_Hq205chqN3sxI7yPkC2drznj7bbcGmNeCCV59q2T_jqx4p_tGMKXfkxVjjDdSaXVGPuW8q1Z3Wn0kZxvZaylYtyLhDpaxUBdgmGIOmfqYaEkQJjqPy0BdrH7JYRroC4bhd0FHfQJbQpxgpC_wjCMWOoP9U8Whjfu57hzPFCdMw6FKSXE-XJAPHsaMn1_1nDze3f66uW8efn7_cXP90NiN2pRm67gEcAKl161DiRK08n6rEAEsesd613dWW-Sq59gJZ4UDr-TWdlIotzknX0-7c4pPC-Zi9iFbHEeYMC7ZiJa3Qves1TXKT1GbYs4JvZlT2EM6GM7MkbDZmUrYHAmbE-HauXydX7Z7dP8ab0hr4OoUwPrkc8Bksg04WXQhoS3GxfCf-b90Bo-a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616279067</pqid></control><display><type>article</type><title>Fault diagnosis for train plug door using weighted fractional wavelet packet decomposition energy entropy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sun, Yongkui ; Cao, Yuan ; Li, Peng</creator><creatorcontrib>Sun, Yongkui ; Cao, Yuan ; Li, Peng</creatorcontrib><description>•Signal reconstruction method based on hybrid criteria for IMFs selection  is proposed.•Novel efficient feature named WFWPDE is developed.•Synchronous optimization strategy is proposed to optimize weights and SVM. As the passage for passengers to get on and off, train plug doors directly affect the operation efficiency of the train and the personal safety of passengers. This paper proposes a non-contact fault diagnosis method for train plug doors based on sound signals. First, empirical mode decomposition (EMD) is utilized to process the raw sound signals. A signal reconstruction method by selecting intrinsic mode functions (IMFs) using hybrid selection criteria is then proposed. Second, novel feature named weighted fractional wavelet packet decomposition energy entropy (WFWPDE) is developed by introducing the idea of fractional calculus and weight to wavelet packet decomposition energy entropy (WDPE). Third, a synchronous optimization strategy is proposed to optimize the weights and hyperparameters of support vector machine (SVM) synchronously. Finally, the superiority and feasibility of the proposed method are verified on field-collected data. By comparing with different fault diagnosis methods, the proposed method performs best on fault diagnosis of train plug doors, with accuracy of 97.87%.</description><identifier>ISSN: 0001-4575</identifier><identifier>EISSN: 1879-2057</identifier><identifier>DOI: 10.1016/j.aap.2021.106549</identifier><identifier>PMID: 34974208</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Accidents, Traffic ; Algorithms ; Entropy ; Fault diagnosis ; Humans ; Signal Processing, Computer-Assisted ; Signal reconstruction ; Support Vector Machine ; Synchronous optimization strategy ; Train plug doors ; Weighted fractional wavelet packet decomposition energy entropy (WFWPDE)</subject><ispartof>Accident analysis and prevention, 2022-03, Vol.166, p.106549-106549, Article 106549</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-bd14aad2e4f76de4e4a75ffb5eeaacefd09d98c7ce1591e82dc2daf54bc8425d3</citedby><cites>FETCH-LOGICAL-c353t-bd14aad2e4f76de4e4a75ffb5eeaacefd09d98c7ce1591e82dc2daf54bc8425d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0001457521005807$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34974208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yongkui</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><title>Fault diagnosis for train plug door using weighted fractional wavelet packet decomposition energy entropy</title><title>Accident analysis and prevention</title><addtitle>Accid Anal Prev</addtitle><description>•Signal reconstruction method based on hybrid criteria for IMFs selection  is proposed.•Novel efficient feature named WFWPDE is developed.•Synchronous optimization strategy is proposed to optimize weights and SVM. As the passage for passengers to get on and off, train plug doors directly affect the operation efficiency of the train and the personal safety of passengers. This paper proposes a non-contact fault diagnosis method for train plug doors based on sound signals. First, empirical mode decomposition (EMD) is utilized to process the raw sound signals. A signal reconstruction method by selecting intrinsic mode functions (IMFs) using hybrid selection criteria is then proposed. Second, novel feature named weighted fractional wavelet packet decomposition energy entropy (WFWPDE) is developed by introducing the idea of fractional calculus and weight to wavelet packet decomposition energy entropy (WDPE). Third, a synchronous optimization strategy is proposed to optimize the weights and hyperparameters of support vector machine (SVM) synchronously. Finally, the superiority and feasibility of the proposed method are verified on field-collected data. By comparing with different fault diagnosis methods, the proposed method performs best on fault diagnosis of train plug doors, with accuracy of 97.87%.</description><subject>Accidents, Traffic</subject><subject>Algorithms</subject><subject>Entropy</subject><subject>Fault diagnosis</subject><subject>Humans</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal reconstruction</subject><subject>Support Vector Machine</subject><subject>Synchronous optimization strategy</subject><subject>Train plug doors</subject><subject>Weighted fractional wavelet packet decomposition energy entropy (WFWPDE)</subject><issn>0001-4575</issn><issn>1879-2057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFv1DAUhC0EokvLD-BS-cgli-2140Q9VVVLkSpxoWfrrf0cvGTj1HZa7b_Hq205chqN3sxI7yPkC2drznj7bbcGmNeCCV59q2T_jqx4p_tGMKXfkxVjjDdSaXVGPuW8q1Z3Wn0kZxvZaylYtyLhDpaxUBdgmGIOmfqYaEkQJjqPy0BdrH7JYRroC4bhd0FHfQJbQpxgpC_wjCMWOoP9U8Whjfu57hzPFCdMw6FKSXE-XJAPHsaMn1_1nDze3f66uW8efn7_cXP90NiN2pRm67gEcAKl161DiRK08n6rEAEsesd613dWW-Sq59gJZ4UDr-TWdlIotzknX0-7c4pPC-Zi9iFbHEeYMC7ZiJa3Qves1TXKT1GbYs4JvZlT2EM6GM7MkbDZmUrYHAmbE-HauXydX7Z7dP8ab0hr4OoUwPrkc8Bksg04WXQhoS3GxfCf-b90Bo-a</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Sun, Yongkui</creator><creator>Cao, Yuan</creator><creator>Li, Peng</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202203</creationdate><title>Fault diagnosis for train plug door using weighted fractional wavelet packet decomposition energy entropy</title><author>Sun, Yongkui ; Cao, Yuan ; Li, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-bd14aad2e4f76de4e4a75ffb5eeaacefd09d98c7ce1591e82dc2daf54bc8425d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accidents, Traffic</topic><topic>Algorithms</topic><topic>Entropy</topic><topic>Fault diagnosis</topic><topic>Humans</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal reconstruction</topic><topic>Support Vector Machine</topic><topic>Synchronous optimization strategy</topic><topic>Train plug doors</topic><topic>Weighted fractional wavelet packet decomposition energy entropy (WFWPDE)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yongkui</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Accident analysis and prevention</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yongkui</au><au>Cao, Yuan</au><au>Li, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault diagnosis for train plug door using weighted fractional wavelet packet decomposition energy entropy</atitle><jtitle>Accident analysis and prevention</jtitle><addtitle>Accid Anal Prev</addtitle><date>2022-03</date><risdate>2022</risdate><volume>166</volume><spage>106549</spage><epage>106549</epage><pages>106549-106549</pages><artnum>106549</artnum><issn>0001-4575</issn><eissn>1879-2057</eissn><abstract>•Signal reconstruction method based on hybrid criteria for IMFs selection  is proposed.•Novel efficient feature named WFWPDE is developed.•Synchronous optimization strategy is proposed to optimize weights and SVM. As the passage for passengers to get on and off, train plug doors directly affect the operation efficiency of the train and the personal safety of passengers. This paper proposes a non-contact fault diagnosis method for train plug doors based on sound signals. First, empirical mode decomposition (EMD) is utilized to process the raw sound signals. A signal reconstruction method by selecting intrinsic mode functions (IMFs) using hybrid selection criteria is then proposed. Second, novel feature named weighted fractional wavelet packet decomposition energy entropy (WFWPDE) is developed by introducing the idea of fractional calculus and weight to wavelet packet decomposition energy entropy (WDPE). Third, a synchronous optimization strategy is proposed to optimize the weights and hyperparameters of support vector machine (SVM) synchronously. Finally, the superiority and feasibility of the proposed method are verified on field-collected data. By comparing with different fault diagnosis methods, the proposed method performs best on fault diagnosis of train plug doors, with accuracy of 97.87%.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34974208</pmid><doi>10.1016/j.aap.2021.106549</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4575
ispartof Accident analysis and prevention, 2022-03, Vol.166, p.106549-106549, Article 106549
issn 0001-4575
1879-2057
language eng
recordid cdi_proquest_miscellaneous_2616279067
source MEDLINE; Elsevier ScienceDirect Journals
subjects Accidents, Traffic
Algorithms
Entropy
Fault diagnosis
Humans
Signal Processing, Computer-Assisted
Signal reconstruction
Support Vector Machine
Synchronous optimization strategy
Train plug doors
Weighted fractional wavelet packet decomposition energy entropy (WFWPDE)
title Fault diagnosis for train plug door using weighted fractional wavelet packet decomposition energy entropy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20diagnosis%20for%20train%20plug%20door%20using%20weighted%20fractional%20wavelet%20packet%20decomposition%20energy%20entropy&rft.jtitle=Accident%20analysis%20and%20prevention&rft.au=Sun,%20Yongkui&rft.date=2022-03&rft.volume=166&rft.spage=106549&rft.epage=106549&rft.pages=106549-106549&rft.artnum=106549&rft.issn=0001-4575&rft.eissn=1879-2057&rft_id=info:doi/10.1016/j.aap.2021.106549&rft_dat=%3Cproquest_cross%3E2616279067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616279067&rft_id=info:pmid/34974208&rft_els_id=S0001457521005807&rfr_iscdi=true