Fault diagnosis for train plug door using weighted fractional wavelet packet decomposition energy entropy
•Signal reconstruction method based on hybrid criteria for IMFs selection is proposed.•Novel efficient feature named WFWPDE is developed.•Synchronous optimization strategy is proposed to optimize weights and SVM. As the passage for passengers to get on and off, train plug doors directly affect the...
Gespeichert in:
Veröffentlicht in: | Accident analysis and prevention 2022-03, Vol.166, p.106549-106549, Article 106549 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106549 |
---|---|
container_issue | |
container_start_page | 106549 |
container_title | Accident analysis and prevention |
container_volume | 166 |
creator | Sun, Yongkui Cao, Yuan Li, Peng |
description | •Signal reconstruction method based on hybrid criteria for IMFs selection is proposed.•Novel efficient feature named WFWPDE is developed.•Synchronous optimization strategy is proposed to optimize weights and SVM.
As the passage for passengers to get on and off, train plug doors directly affect the operation efficiency of the train and the personal safety of passengers. This paper proposes a non-contact fault diagnosis method for train plug doors based on sound signals. First, empirical mode decomposition (EMD) is utilized to process the raw sound signals. A signal reconstruction method by selecting intrinsic mode functions (IMFs) using hybrid selection criteria is then proposed. Second, novel feature named weighted fractional wavelet packet decomposition energy entropy (WFWPDE) is developed by introducing the idea of fractional calculus and weight to wavelet packet decomposition energy entropy (WDPE). Third, a synchronous optimization strategy is proposed to optimize the weights and hyperparameters of support vector machine (SVM) synchronously. Finally, the superiority and feasibility of the proposed method are verified on field-collected data. By comparing with different fault diagnosis methods, the proposed method performs best on fault diagnosis of train plug doors, with accuracy of 97.87%. |
doi_str_mv | 10.1016/j.aap.2021.106549 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2616279067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001457521005807</els_id><sourcerecordid>2616279067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-bd14aad2e4f76de4e4a75ffb5eeaacefd09d98c7ce1591e82dc2daf54bc8425d3</originalsourceid><addsrcrecordid>eNp9kEFv1DAUhC0EokvLD-BS-cgli-2140Q9VVVLkSpxoWfrrf0cvGTj1HZa7b_Hq205chqN3sxI7yPkC2drznj7bbcGmNeCCV59q2T_jqx4p_tGMKXfkxVjjDdSaXVGPuW8q1Z3Wn0kZxvZaylYtyLhDpaxUBdgmGIOmfqYaEkQJjqPy0BdrH7JYRroC4bhd0FHfQJbQpxgpC_wjCMWOoP9U8Whjfu57hzPFCdMw6FKSXE-XJAPHsaMn1_1nDze3f66uW8efn7_cXP90NiN2pRm67gEcAKl161DiRK08n6rEAEsesd613dWW-Sq59gJZ4UDr-TWdlIotzknX0-7c4pPC-Zi9iFbHEeYMC7ZiJa3Qves1TXKT1GbYs4JvZlT2EM6GM7MkbDZmUrYHAmbE-HauXydX7Z7dP8ab0hr4OoUwPrkc8Bksg04WXQhoS3GxfCf-b90Bo-a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616279067</pqid></control><display><type>article</type><title>Fault diagnosis for train plug door using weighted fractional wavelet packet decomposition energy entropy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Sun, Yongkui ; Cao, Yuan ; Li, Peng</creator><creatorcontrib>Sun, Yongkui ; Cao, Yuan ; Li, Peng</creatorcontrib><description>•Signal reconstruction method based on hybrid criteria for IMFs selection is proposed.•Novel efficient feature named WFWPDE is developed.•Synchronous optimization strategy is proposed to optimize weights and SVM.
As the passage for passengers to get on and off, train plug doors directly affect the operation efficiency of the train and the personal safety of passengers. This paper proposes a non-contact fault diagnosis method for train plug doors based on sound signals. First, empirical mode decomposition (EMD) is utilized to process the raw sound signals. A signal reconstruction method by selecting intrinsic mode functions (IMFs) using hybrid selection criteria is then proposed. Second, novel feature named weighted fractional wavelet packet decomposition energy entropy (WFWPDE) is developed by introducing the idea of fractional calculus and weight to wavelet packet decomposition energy entropy (WDPE). Third, a synchronous optimization strategy is proposed to optimize the weights and hyperparameters of support vector machine (SVM) synchronously. Finally, the superiority and feasibility of the proposed method are verified on field-collected data. By comparing with different fault diagnosis methods, the proposed method performs best on fault diagnosis of train plug doors, with accuracy of 97.87%.</description><identifier>ISSN: 0001-4575</identifier><identifier>EISSN: 1879-2057</identifier><identifier>DOI: 10.1016/j.aap.2021.106549</identifier><identifier>PMID: 34974208</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Accidents, Traffic ; Algorithms ; Entropy ; Fault diagnosis ; Humans ; Signal Processing, Computer-Assisted ; Signal reconstruction ; Support Vector Machine ; Synchronous optimization strategy ; Train plug doors ; Weighted fractional wavelet packet decomposition energy entropy (WFWPDE)</subject><ispartof>Accident analysis and prevention, 2022-03, Vol.166, p.106549-106549, Article 106549</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-bd14aad2e4f76de4e4a75ffb5eeaacefd09d98c7ce1591e82dc2daf54bc8425d3</citedby><cites>FETCH-LOGICAL-c353t-bd14aad2e4f76de4e4a75ffb5eeaacefd09d98c7ce1591e82dc2daf54bc8425d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0001457521005807$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34974208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yongkui</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><title>Fault diagnosis for train plug door using weighted fractional wavelet packet decomposition energy entropy</title><title>Accident analysis and prevention</title><addtitle>Accid Anal Prev</addtitle><description>•Signal reconstruction method based on hybrid criteria for IMFs selection is proposed.•Novel efficient feature named WFWPDE is developed.•Synchronous optimization strategy is proposed to optimize weights and SVM.
As the passage for passengers to get on and off, train plug doors directly affect the operation efficiency of the train and the personal safety of passengers. This paper proposes a non-contact fault diagnosis method for train plug doors based on sound signals. First, empirical mode decomposition (EMD) is utilized to process the raw sound signals. A signal reconstruction method by selecting intrinsic mode functions (IMFs) using hybrid selection criteria is then proposed. Second, novel feature named weighted fractional wavelet packet decomposition energy entropy (WFWPDE) is developed by introducing the idea of fractional calculus and weight to wavelet packet decomposition energy entropy (WDPE). Third, a synchronous optimization strategy is proposed to optimize the weights and hyperparameters of support vector machine (SVM) synchronously. Finally, the superiority and feasibility of the proposed method are verified on field-collected data. By comparing with different fault diagnosis methods, the proposed method performs best on fault diagnosis of train plug doors, with accuracy of 97.87%.</description><subject>Accidents, Traffic</subject><subject>Algorithms</subject><subject>Entropy</subject><subject>Fault diagnosis</subject><subject>Humans</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal reconstruction</subject><subject>Support Vector Machine</subject><subject>Synchronous optimization strategy</subject><subject>Train plug doors</subject><subject>Weighted fractional wavelet packet decomposition energy entropy (WFWPDE)</subject><issn>0001-4575</issn><issn>1879-2057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFv1DAUhC0EokvLD-BS-cgli-2140Q9VVVLkSpxoWfrrf0cvGTj1HZa7b_Hq205chqN3sxI7yPkC2drznj7bbcGmNeCCV59q2T_jqx4p_tGMKXfkxVjjDdSaXVGPuW8q1Z3Wn0kZxvZaylYtyLhDpaxUBdgmGIOmfqYaEkQJjqPy0BdrH7JYRroC4bhd0FHfQJbQpxgpC_wjCMWOoP9U8Whjfu57hzPFCdMw6FKSXE-XJAPHsaMn1_1nDze3f66uW8efn7_cXP90NiN2pRm67gEcAKl161DiRK08n6rEAEsesd613dWW-Sq59gJZ4UDr-TWdlIotzknX0-7c4pPC-Zi9iFbHEeYMC7ZiJa3Qves1TXKT1GbYs4JvZlT2EM6GM7MkbDZmUrYHAmbE-HauXydX7Z7dP8ab0hr4OoUwPrkc8Bksg04WXQhoS3GxfCf-b90Bo-a</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Sun, Yongkui</creator><creator>Cao, Yuan</creator><creator>Li, Peng</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202203</creationdate><title>Fault diagnosis for train plug door using weighted fractional wavelet packet decomposition energy entropy</title><author>Sun, Yongkui ; Cao, Yuan ; Li, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-bd14aad2e4f76de4e4a75ffb5eeaacefd09d98c7ce1591e82dc2daf54bc8425d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accidents, Traffic</topic><topic>Algorithms</topic><topic>Entropy</topic><topic>Fault diagnosis</topic><topic>Humans</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal reconstruction</topic><topic>Support Vector Machine</topic><topic>Synchronous optimization strategy</topic><topic>Train plug doors</topic><topic>Weighted fractional wavelet packet decomposition energy entropy (WFWPDE)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yongkui</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Accident analysis and prevention</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yongkui</au><au>Cao, Yuan</au><au>Li, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault diagnosis for train plug door using weighted fractional wavelet packet decomposition energy entropy</atitle><jtitle>Accident analysis and prevention</jtitle><addtitle>Accid Anal Prev</addtitle><date>2022-03</date><risdate>2022</risdate><volume>166</volume><spage>106549</spage><epage>106549</epage><pages>106549-106549</pages><artnum>106549</artnum><issn>0001-4575</issn><eissn>1879-2057</eissn><abstract>•Signal reconstruction method based on hybrid criteria for IMFs selection is proposed.•Novel efficient feature named WFWPDE is developed.•Synchronous optimization strategy is proposed to optimize weights and SVM.
As the passage for passengers to get on and off, train plug doors directly affect the operation efficiency of the train and the personal safety of passengers. This paper proposes a non-contact fault diagnosis method for train plug doors based on sound signals. First, empirical mode decomposition (EMD) is utilized to process the raw sound signals. A signal reconstruction method by selecting intrinsic mode functions (IMFs) using hybrid selection criteria is then proposed. Second, novel feature named weighted fractional wavelet packet decomposition energy entropy (WFWPDE) is developed by introducing the idea of fractional calculus and weight to wavelet packet decomposition energy entropy (WDPE). Third, a synchronous optimization strategy is proposed to optimize the weights and hyperparameters of support vector machine (SVM) synchronously. Finally, the superiority and feasibility of the proposed method are verified on field-collected data. By comparing with different fault diagnosis methods, the proposed method performs best on fault diagnosis of train plug doors, with accuracy of 97.87%.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34974208</pmid><doi>10.1016/j.aap.2021.106549</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4575 |
ispartof | Accident analysis and prevention, 2022-03, Vol.166, p.106549-106549, Article 106549 |
issn | 0001-4575 1879-2057 |
language | eng |
recordid | cdi_proquest_miscellaneous_2616279067 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Accidents, Traffic Algorithms Entropy Fault diagnosis Humans Signal Processing, Computer-Assisted Signal reconstruction Support Vector Machine Synchronous optimization strategy Train plug doors Weighted fractional wavelet packet decomposition energy entropy (WFWPDE) |
title | Fault diagnosis for train plug door using weighted fractional wavelet packet decomposition energy entropy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20diagnosis%20for%20train%20plug%20door%20using%20weighted%20fractional%20wavelet%20packet%20decomposition%20energy%20entropy&rft.jtitle=Accident%20analysis%20and%20prevention&rft.au=Sun,%20Yongkui&rft.date=2022-03&rft.volume=166&rft.spage=106549&rft.epage=106549&rft.pages=106549-106549&rft.artnum=106549&rft.issn=0001-4575&rft.eissn=1879-2057&rft_id=info:doi/10.1016/j.aap.2021.106549&rft_dat=%3Cproquest_cross%3E2616279067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616279067&rft_id=info:pmid/34974208&rft_els_id=S0001457521005807&rfr_iscdi=true |