Generating ion implantation profiles in one and two dimensions. 1: density functions

In this, the first of two papers, the problem of constructing ion implantation profiles in one and two dimensions from depth-independent spatial moments is discussed. Comparisons are made between Pearson and Johnson curves, constructed from moments produced by a transport equation solver, and profil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 1996-05, Vol.29 (5), p.1274-1285, Article 1274
Hauptverfasser: Bowyer, M D J, Ashworth, D G, Oven, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1285
container_issue 5
container_start_page 1274
container_title Journal of physics. D, Applied physics
container_volume 29
creator Bowyer, M D J
Ashworth, D G
Oven, R
description In this, the first of two papers, the problem of constructing ion implantation profiles in one and two dimensions from depth-independent spatial moments is discussed. Comparisons are made between Pearson and Johnson curves, constructed from moments produced by a transport equation solver, and profiles obtained directly from Monte Carlo simulations. A set of such comparisons, using consistent input quantities, is performed over a range of ion-target mass ratios and energies. For projected range distributions of the ions B, P and As into a-Si, a single Johnson type (S sub(B)) describes the implants over the energy range 1 keV to 1 MeV. The description using Pearson curves requires two types (I and VI). Also, taking the Monte Carlo data as a reference, the Johnson curves are equivalent, if not superior, to the Pearson curves in terms of fit accuracy. For lateral distributions of the same ion types over the same energy range it is shown that if the depth-dependent lateral kurtosis is less than 3.0, then the Pearson type II (bounded), Johnson type S sub(B) (bounded) and the modified Gaussian (unbounded) curves prove acceptable representations. If the depth-dependent lateral kurtosis is greater than 3.0 then the Pearson type VII (unbounded) and Johnson type S sub(U) (unbounded) curves are good representations.
doi_str_mv 10.1088/0022-3727/29/5/022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26154810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26154810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-dad248496ce0b9ffd456a13f8d8b0d3b544e5f9dff0e6af1b4656704d70392553</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMoWKt_wFUWIriYTt7JuJPiCwpu6jqkk0Qi08w4mSL992Zo6cKCuAonfOfcew8A1xjNMFKqRIiQgkoiS1KVvMzqBEwwFbgQTNBTMDkA5-AipU-EEBcKT8Dy2UXXmyHEDxjaCMO6a0wc8kcWXd_60LgEQ4RtdNBEC4fvFtqwdjFlIs0gvod2FMMW-k2sR1-6BGfeNMld7d8peH96XM5fisXb8-v8YVHUVMqhsMYSplglaodWlfeWcWEw9cqqFbJ0xRlz3FfWe-SE8XjFBBcSMSsRrQjndApud7l50a-NS4Neh1S7Jl_g2k3SRGDOFEYZJDuw7tuUeud114e16bcaIz0WqMd-9NiPJpXmOqtsutmnm1Sbxvcm1iEdnBRJKZTMmPqVXYddf0NvQvP3hGJnDW33v43ujvljTnfW0x_Rnpyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26154810</pqid></control><display><type>article</type><title>Generating ion implantation profiles in one and two dimensions. 1: density functions</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Bowyer, M D J ; Ashworth, D G ; Oven, R</creator><creatorcontrib>Bowyer, M D J ; Ashworth, D G ; Oven, R</creatorcontrib><description>In this, the first of two papers, the problem of constructing ion implantation profiles in one and two dimensions from depth-independent spatial moments is discussed. Comparisons are made between Pearson and Johnson curves, constructed from moments produced by a transport equation solver, and profiles obtained directly from Monte Carlo simulations. A set of such comparisons, using consistent input quantities, is performed over a range of ion-target mass ratios and energies. For projected range distributions of the ions B, P and As into a-Si, a single Johnson type (S sub(B)) describes the implants over the energy range 1 keV to 1 MeV. The description using Pearson curves requires two types (I and VI). Also, taking the Monte Carlo data as a reference, the Johnson curves are equivalent, if not superior, to the Pearson curves in terms of fit accuracy. For lateral distributions of the same ion types over the same energy range it is shown that if the depth-dependent lateral kurtosis is less than 3.0, then the Pearson type II (bounded), Johnson type S sub(B) (bounded) and the modified Gaussian (unbounded) curves prove acceptable representations. If the depth-dependent lateral kurtosis is greater than 3.0 then the Pearson type VII (unbounded) and Johnson type S sub(U) (unbounded) curves are good representations.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/0022-3727/29/5/022</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Defects and impurities in crystals; microstructure ; Doping and impurity implantation in germanium and silicon ; Exact sciences and technology ; Physics ; Structure of solids and liquids; crystallography</subject><ispartof>Journal of physics. D, Applied physics, 1996-05, Vol.29 (5), p.1274-1285, Article 1274</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-dad248496ce0b9ffd456a13f8d8b0d3b544e5f9dff0e6af1b4656704d70392553</citedby><cites>FETCH-LOGICAL-c377t-dad248496ce0b9ffd456a13f8d8b0d3b544e5f9dff0e6af1b4656704d70392553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0022-3727/29/5/022/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3077687$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowyer, M D J</creatorcontrib><creatorcontrib>Ashworth, D G</creatorcontrib><creatorcontrib>Oven, R</creatorcontrib><title>Generating ion implantation profiles in one and two dimensions. 1: density functions</title><title>Journal of physics. D, Applied physics</title><description>In this, the first of two papers, the problem of constructing ion implantation profiles in one and two dimensions from depth-independent spatial moments is discussed. Comparisons are made between Pearson and Johnson curves, constructed from moments produced by a transport equation solver, and profiles obtained directly from Monte Carlo simulations. A set of such comparisons, using consistent input quantities, is performed over a range of ion-target mass ratios and energies. For projected range distributions of the ions B, P and As into a-Si, a single Johnson type (S sub(B)) describes the implants over the energy range 1 keV to 1 MeV. The description using Pearson curves requires two types (I and VI). Also, taking the Monte Carlo data as a reference, the Johnson curves are equivalent, if not superior, to the Pearson curves in terms of fit accuracy. For lateral distributions of the same ion types over the same energy range it is shown that if the depth-dependent lateral kurtosis is less than 3.0, then the Pearson type II (bounded), Johnson type S sub(B) (bounded) and the modified Gaussian (unbounded) curves prove acceptable representations. If the depth-dependent lateral kurtosis is greater than 3.0 then the Pearson type VII (unbounded) and Johnson type S sub(U) (unbounded) curves are good representations.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Doping and impurity implantation in germanium and silicon</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEUhYMoWKt_wFUWIriYTt7JuJPiCwpu6jqkk0Qi08w4mSL992Zo6cKCuAonfOfcew8A1xjNMFKqRIiQgkoiS1KVvMzqBEwwFbgQTNBTMDkA5-AipU-EEBcKT8Dy2UXXmyHEDxjaCMO6a0wc8kcWXd_60LgEQ4RtdNBEC4fvFtqwdjFlIs0gvod2FMMW-k2sR1-6BGfeNMld7d8peH96XM5fisXb8-v8YVHUVMqhsMYSplglaodWlfeWcWEw9cqqFbJ0xRlz3FfWe-SE8XjFBBcSMSsRrQjndApud7l50a-NS4Neh1S7Jl_g2k3SRGDOFEYZJDuw7tuUeud114e16bcaIz0WqMd-9NiPJpXmOqtsutmnm1Sbxvcm1iEdnBRJKZTMmPqVXYddf0NvQvP3hGJnDW33v43ujvljTnfW0x_Rnpyk</recordid><startdate>19960514</startdate><enddate>19960514</enddate><creator>Bowyer, M D J</creator><creator>Ashworth, D G</creator><creator>Oven, R</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19960514</creationdate><title>Generating ion implantation profiles in one and two dimensions. 1: density functions</title><author>Bowyer, M D J ; Ashworth, D G ; Oven, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-dad248496ce0b9ffd456a13f8d8b0d3b544e5f9dff0e6af1b4656704d70392553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Doping and impurity implantation in germanium and silicon</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowyer, M D J</creatorcontrib><creatorcontrib>Ashworth, D G</creatorcontrib><creatorcontrib>Oven, R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowyer, M D J</au><au>Ashworth, D G</au><au>Oven, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating ion implantation profiles in one and two dimensions. 1: density functions</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><date>1996-05-14</date><risdate>1996</risdate><volume>29</volume><issue>5</issue><spage>1274</spage><epage>1285</epage><pages>1274-1285</pages><artnum>1274</artnum><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>In this, the first of two papers, the problem of constructing ion implantation profiles in one and two dimensions from depth-independent spatial moments is discussed. Comparisons are made between Pearson and Johnson curves, constructed from moments produced by a transport equation solver, and profiles obtained directly from Monte Carlo simulations. A set of such comparisons, using consistent input quantities, is performed over a range of ion-target mass ratios and energies. For projected range distributions of the ions B, P and As into a-Si, a single Johnson type (S sub(B)) describes the implants over the energy range 1 keV to 1 MeV. The description using Pearson curves requires two types (I and VI). Also, taking the Monte Carlo data as a reference, the Johnson curves are equivalent, if not superior, to the Pearson curves in terms of fit accuracy. For lateral distributions of the same ion types over the same energy range it is shown that if the depth-dependent lateral kurtosis is less than 3.0, then the Pearson type II (bounded), Johnson type S sub(B) (bounded) and the modified Gaussian (unbounded) curves prove acceptable representations. If the depth-dependent lateral kurtosis is greater than 3.0 then the Pearson type VII (unbounded) and Johnson type S sub(U) (unbounded) curves are good representations.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0022-3727/29/5/022</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 1996-05, Vol.29 (5), p.1274-1285, Article 1274
issn 0022-3727
1361-6463
language eng
recordid cdi_proquest_miscellaneous_26154810
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Condensed matter: structure, mechanical and thermal properties
Defects and impurities in crystals
microstructure
Doping and impurity implantation in germanium and silicon
Exact sciences and technology
Physics
Structure of solids and liquids
crystallography
title Generating ion implantation profiles in one and two dimensions. 1: density functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20ion%20implantation%20profiles%20in%20one%20and%20two%20dimensions.%201:%20density%20functions&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Bowyer,%20M%20D%20J&rft.date=1996-05-14&rft.volume=29&rft.issue=5&rft.spage=1274&rft.epage=1285&rft.pages=1274-1285&rft.artnum=1274&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/0022-3727/29/5/022&rft_dat=%3Cproquest_cross%3E26154810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26154810&rft_id=info:pmid/&rfr_iscdi=true