Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure
A non-enzymatic dopamine electrochemical sensing probe was developed. A hexagonal shape zinc-doped cobalt oxide (Zn-Co 2 O 4 ) nanostructure was prepared by a facile hydrothermal approach. The combination of Zn, which has an abundance of electrons, and Co 3 O 4 exhibited a synergistically electron-r...
Gespeichert in:
Veröffentlicht in: | Mikrochimica acta (1966) 2022-01, Vol.189 (1), p.37-37, Article 37 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | Mikrochimica acta (1966) |
container_volume | 189 |
creator | Khan, Muhammad Inam Muhammad, Nawshad Tariq, Muhammad Nishan, Umar Razaq, Aamir Saleh, Tawfik A. Haija, Mohammad Abu Ismail, Issam Rahim, Abdur |
description | A non-enzymatic dopamine electrochemical sensing probe was developed. A hexagonal shape zinc-doped cobalt oxide (Zn-Co
2
O
4
) nanostructure was prepared by a facile hydrothermal approach. The combination of Zn, which has an abundance of electrons, and Co
3
O
4
exhibited a synergistically electron-rich nanocomposite. The crystallinity of the nanostructure was investigated using X-ray diffraction. A scanning electron microscope (SEM) was used to examine the surface morphology, revealing hexagonal nanoparticles with an average particle size of 400 nm. High-resolution transmission electron microscopy (HR-TEM) was used to confirm the nanostructure of the doped material. The nanostructure’s bonding and functional groups were verified using Fourier transform infrared spectroscopy (FTIR). The electrochemical characterization was conducted by using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometry. The resistivity of the electrode was confirmed through EIS and showed that the bare glassy carbon electrode (GCE) exhibited higher charge transfer resistance as compared to modified Zn-Co
2
O
4
/GCE. The sensing probe was developed by modifying the surface of GCE with Zn-Co
2
O
4
nanostructure and tested as an electrochemical sensor for dopamine oxidation; it operated best at a working potential of 0.17 V (vs Ag/AgCl). The developed sensor exhibited a low limit of detection (0.002 µM), a high sensitivity (126 µA. µM
−1
cm
−2
), and a wide linear range (0.2 to 185 µM). The sensor showed a short response time of |
doi_str_mv | 10.1007/s00604-021-05142-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2614754414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715055357</galeid><sourcerecordid>A715055357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-fd5252608e0f4f19881a6153511f1c9c95fee56faad613ee49421e35e3d1256a3</originalsourceid><addsrcrecordid>eNp9kU9vEzEQxS0EoqHwBTggS1zKwcX_d_dYRW1BqugFLlwsxztOXO3awd6V2hz47DgkUIEQ8mEkz--N3sxD6DWj54zS5n2hVFNJKGeEKiY52T1BCyaFJoo24ilaUMo1EbrhJ-hFKXeUskZz-RydCNmpVjK5QN8_pUgg7h5GOwWHYQA35eQ2MAZnB9ynrR1DBFwglhDXeJvTCvDKFuhxingD93adYiXLxm4B70J0pIpq16WVHSac7kMP-OxrJMvEb-U7HG1MZcqzm-YML9Ezb4cCr471FH25uvy8_EBubq8_Li9uiJOST8T3iiuuaQvUS8-6tmVWMyUUY565znXKAyjtre01EwCyk5yBUCB6xpW24hSdHeZW_99mKJMZQ3EwDDZCmovhmslGyXqSir79C71Lc64rHqlOtx1_pNZ2ABOiT1O2bj_UXDRMUVXNNZU6_wdVX7-_b4rgQ_3_Q8APApdTKRm82eYw2vxgGDX70M0hdFNDNz9DN7sqenN0PK9G6H9LfqVcAXEASm3FNeTHlf4z9gdc27aW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614796892</pqid></control><display><type>article</type><title>Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Khan, Muhammad Inam ; Muhammad, Nawshad ; Tariq, Muhammad ; Nishan, Umar ; Razaq, Aamir ; Saleh, Tawfik A. ; Haija, Mohammad Abu ; Ismail, Issam ; Rahim, Abdur</creator><creatorcontrib>Khan, Muhammad Inam ; Muhammad, Nawshad ; Tariq, Muhammad ; Nishan, Umar ; Razaq, Aamir ; Saleh, Tawfik A. ; Haija, Mohammad Abu ; Ismail, Issam ; Rahim, Abdur</creatorcontrib><description>A non-enzymatic dopamine electrochemical sensing probe was developed. A hexagonal shape zinc-doped cobalt oxide (Zn-Co
2
O
4
) nanostructure was prepared by a facile hydrothermal approach. The combination of Zn, which has an abundance of electrons, and Co
3
O
4
exhibited a synergistically electron-rich nanocomposite. The crystallinity of the nanostructure was investigated using X-ray diffraction. A scanning electron microscope (SEM) was used to examine the surface morphology, revealing hexagonal nanoparticles with an average particle size of 400 nm. High-resolution transmission electron microscopy (HR-TEM) was used to confirm the nanostructure of the doped material. The nanostructure’s bonding and functional groups were verified using Fourier transform infrared spectroscopy (FTIR). The electrochemical characterization was conducted by using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometry. The resistivity of the electrode was confirmed through EIS and showed that the bare glassy carbon electrode (GCE) exhibited higher charge transfer resistance as compared to modified Zn-Co
2
O
4
/GCE. The sensing probe was developed by modifying the surface of GCE with Zn-Co
2
O
4
nanostructure and tested as an electrochemical sensor for dopamine oxidation; it operated best at a working potential of 0.17 V (vs Ag/AgCl). The developed sensor exhibited a low limit of detection (0.002 µM), a high sensitivity (126 µA. µM
−1
cm
−2
), and a wide linear range (0.2 to 185 µM). The sensor showed a short response time of < 1 s. The sensor’s selectivity was investigated in the presence of coexisting species (uric acid, ascorbic acid, adrenaline, epinephrine, norepinephrine, histamine, serotonin, tyramine, phenethylamine, and glucose) with no effects on dopamine determination results. The developed sensor was also successfully used for determining dopamine concentrations in a real sample.
Graphical abstract</description><identifier>ISSN: 0026-3672</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-021-05142-z</identifier><identifier>PMID: 34958414</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analytical Chemistry ; Ascorbic acid ; Characterization and Evaluation of Materials ; Charge transfer ; Chemical sensors ; Chemistry ; Chemistry and Materials Science ; Cobalt ; Cobalt - chemistry ; Cobalt oxides ; Dielectric Spectroscopy - instrumentation ; Dielectric Spectroscopy - methods ; Diffraction ; Dopamine ; Dopamine - analysis ; Dopamine - chemistry ; Electric properties ; Electrical measurement ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrodes ; Electrons ; Enzymes ; Epinephrine ; Fourier transforms ; Functional groups ; Glassy carbon ; High resolution electron microscopy ; Histamine ; Infrared spectroscopy ; Investigations ; Limit of Detection ; Microengineering ; Nanochemistry ; Nanocomposites ; Nanocomposites - chemistry ; Nanoparticles ; Nanostructure ; Nanotechnology ; Norepinephrine ; Organic acids ; Original Paper ; Oxidation ; Oxidation-Reduction ; Oxides - chemistry ; Phenols ; Reproducibility of Results ; Response time ; Selectivity ; Sensors ; Serotonin ; Spectrum analysis ; Uric acid ; X-rays ; Zinc ; Zinc - chemistry ; Zinc compounds</subject><ispartof>Mikrochimica acta (1966), 2022-01, Vol.189 (1), p.37-37, Article 37</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-fd5252608e0f4f19881a6153511f1c9c95fee56faad613ee49421e35e3d1256a3</citedby><cites>FETCH-LOGICAL-c442t-fd5252608e0f4f19881a6153511f1c9c95fee56faad613ee49421e35e3d1256a3</cites><orcidid>0000-0002-2102-658X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00604-021-05142-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00604-021-05142-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34958414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Muhammad Inam</creatorcontrib><creatorcontrib>Muhammad, Nawshad</creatorcontrib><creatorcontrib>Tariq, Muhammad</creatorcontrib><creatorcontrib>Nishan, Umar</creatorcontrib><creatorcontrib>Razaq, Aamir</creatorcontrib><creatorcontrib>Saleh, Tawfik A.</creatorcontrib><creatorcontrib>Haija, Mohammad Abu</creatorcontrib><creatorcontrib>Ismail, Issam</creatorcontrib><creatorcontrib>Rahim, Abdur</creatorcontrib><title>Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><addtitle>Mikrochim Acta</addtitle><description>A non-enzymatic dopamine electrochemical sensing probe was developed. A hexagonal shape zinc-doped cobalt oxide (Zn-Co
2
O
4
) nanostructure was prepared by a facile hydrothermal approach. The combination of Zn, which has an abundance of electrons, and Co
3
O
4
exhibited a synergistically electron-rich nanocomposite. The crystallinity of the nanostructure was investigated using X-ray diffraction. A scanning electron microscope (SEM) was used to examine the surface morphology, revealing hexagonal nanoparticles with an average particle size of 400 nm. High-resolution transmission electron microscopy (HR-TEM) was used to confirm the nanostructure of the doped material. The nanostructure’s bonding and functional groups were verified using Fourier transform infrared spectroscopy (FTIR). The electrochemical characterization was conducted by using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometry. The resistivity of the electrode was confirmed through EIS and showed that the bare glassy carbon electrode (GCE) exhibited higher charge transfer resistance as compared to modified Zn-Co
2
O
4
/GCE. The sensing probe was developed by modifying the surface of GCE with Zn-Co
2
O
4
nanostructure and tested as an electrochemical sensor for dopamine oxidation; it operated best at a working potential of 0.17 V (vs Ag/AgCl). The developed sensor exhibited a low limit of detection (0.002 µM), a high sensitivity (126 µA. µM
−1
cm
−2
), and a wide linear range (0.2 to 185 µM). The sensor showed a short response time of < 1 s. The sensor’s selectivity was investigated in the presence of coexisting species (uric acid, ascorbic acid, adrenaline, epinephrine, norepinephrine, histamine, serotonin, tyramine, phenethylamine, and glucose) with no effects on dopamine determination results. The developed sensor was also successfully used for determining dopamine concentrations in a real sample.
Graphical abstract</description><subject>Analytical Chemistry</subject><subject>Ascorbic acid</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemical sensors</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Cobalt - chemistry</subject><subject>Cobalt oxides</subject><subject>Dielectric Spectroscopy - instrumentation</subject><subject>Dielectric Spectroscopy - methods</subject><subject>Diffraction</subject><subject>Dopamine</subject><subject>Dopamine - analysis</subject><subject>Dopamine - chemistry</subject><subject>Electric properties</subject><subject>Electrical measurement</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Enzymes</subject><subject>Epinephrine</subject><subject>Fourier transforms</subject><subject>Functional groups</subject><subject>Glassy carbon</subject><subject>High resolution electron microscopy</subject><subject>Histamine</subject><subject>Infrared spectroscopy</subject><subject>Investigations</subject><subject>Limit of Detection</subject><subject>Microengineering</subject><subject>Nanochemistry</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Norepinephrine</subject><subject>Organic acids</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxides - chemistry</subject><subject>Phenols</subject><subject>Reproducibility of Results</subject><subject>Response time</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>Serotonin</subject><subject>Spectrum analysis</subject><subject>Uric acid</subject><subject>X-rays</subject><subject>Zinc</subject><subject>Zinc - chemistry</subject><subject>Zinc compounds</subject><issn>0026-3672</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9vEzEQxS0EoqHwBTggS1zKwcX_d_dYRW1BqugFLlwsxztOXO3awd6V2hz47DgkUIEQ8mEkz--N3sxD6DWj54zS5n2hVFNJKGeEKiY52T1BCyaFJoo24ilaUMo1EbrhJ-hFKXeUskZz-RydCNmpVjK5QN8_pUgg7h5GOwWHYQA35eQ2MAZnB9ynrR1DBFwglhDXeJvTCvDKFuhxingD93adYiXLxm4B70J0pIpq16WVHSac7kMP-OxrJMvEb-U7HG1MZcqzm-YML9Ezb4cCr471FH25uvy8_EBubq8_Li9uiJOST8T3iiuuaQvUS8-6tmVWMyUUY565znXKAyjtre01EwCyk5yBUCB6xpW24hSdHeZW_99mKJMZQ3EwDDZCmovhmslGyXqSir79C71Lc64rHqlOtx1_pNZ2ABOiT1O2bj_UXDRMUVXNNZU6_wdVX7-_b4rgQ_3_Q8APApdTKRm82eYw2vxgGDX70M0hdFNDNz9DN7sqenN0PK9G6H9LfqVcAXEASm3FNeTHlf4z9gdc27aW</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Khan, Muhammad Inam</creator><creator>Muhammad, Nawshad</creator><creator>Tariq, Muhammad</creator><creator>Nishan, Umar</creator><creator>Razaq, Aamir</creator><creator>Saleh, Tawfik A.</creator><creator>Haija, Mohammad Abu</creator><creator>Ismail, Issam</creator><creator>Rahim, Abdur</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2102-658X</orcidid></search><sort><creationdate>20220101</creationdate><title>Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure</title><author>Khan, Muhammad Inam ; Muhammad, Nawshad ; Tariq, Muhammad ; Nishan, Umar ; Razaq, Aamir ; Saleh, Tawfik A. ; Haija, Mohammad Abu ; Ismail, Issam ; Rahim, Abdur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-fd5252608e0f4f19881a6153511f1c9c95fee56faad613ee49421e35e3d1256a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Ascorbic acid</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemical sensors</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Cobalt - chemistry</topic><topic>Cobalt oxides</topic><topic>Dielectric Spectroscopy - instrumentation</topic><topic>Dielectric Spectroscopy - methods</topic><topic>Diffraction</topic><topic>Dopamine</topic><topic>Dopamine - analysis</topic><topic>Dopamine - chemistry</topic><topic>Electric properties</topic><topic>Electrical measurement</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Enzymes</topic><topic>Epinephrine</topic><topic>Fourier transforms</topic><topic>Functional groups</topic><topic>Glassy carbon</topic><topic>High resolution electron microscopy</topic><topic>Histamine</topic><topic>Infrared spectroscopy</topic><topic>Investigations</topic><topic>Limit of Detection</topic><topic>Microengineering</topic><topic>Nanochemistry</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Norepinephrine</topic><topic>Organic acids</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxides - chemistry</topic><topic>Phenols</topic><topic>Reproducibility of Results</topic><topic>Response time</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>Serotonin</topic><topic>Spectrum analysis</topic><topic>Uric acid</topic><topic>X-rays</topic><topic>Zinc</topic><topic>Zinc - chemistry</topic><topic>Zinc compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Muhammad Inam</creatorcontrib><creatorcontrib>Muhammad, Nawshad</creatorcontrib><creatorcontrib>Tariq, Muhammad</creatorcontrib><creatorcontrib>Nishan, Umar</creatorcontrib><creatorcontrib>Razaq, Aamir</creatorcontrib><creatorcontrib>Saleh, Tawfik A.</creatorcontrib><creatorcontrib>Haija, Mohammad Abu</creatorcontrib><creatorcontrib>Ismail, Issam</creatorcontrib><creatorcontrib>Rahim, Abdur</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Muhammad Inam</au><au>Muhammad, Nawshad</au><au>Tariq, Muhammad</au><au>Nishan, Umar</au><au>Razaq, Aamir</au><au>Saleh, Tawfik A.</au><au>Haija, Mohammad Abu</au><au>Ismail, Issam</au><au>Rahim, Abdur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><addtitle>Mikrochim Acta</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>189</volume><issue>1</issue><spage>37</spage><epage>37</epage><pages>37-37</pages><artnum>37</artnum><issn>0026-3672</issn><eissn>1436-5073</eissn><abstract>A non-enzymatic dopamine electrochemical sensing probe was developed. A hexagonal shape zinc-doped cobalt oxide (Zn-Co
2
O
4
) nanostructure was prepared by a facile hydrothermal approach. The combination of Zn, which has an abundance of electrons, and Co
3
O
4
exhibited a synergistically electron-rich nanocomposite. The crystallinity of the nanostructure was investigated using X-ray diffraction. A scanning electron microscope (SEM) was used to examine the surface morphology, revealing hexagonal nanoparticles with an average particle size of 400 nm. High-resolution transmission electron microscopy (HR-TEM) was used to confirm the nanostructure of the doped material. The nanostructure’s bonding and functional groups were verified using Fourier transform infrared spectroscopy (FTIR). The electrochemical characterization was conducted by using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometry. The resistivity of the electrode was confirmed through EIS and showed that the bare glassy carbon electrode (GCE) exhibited higher charge transfer resistance as compared to modified Zn-Co
2
O
4
/GCE. The sensing probe was developed by modifying the surface of GCE with Zn-Co
2
O
4
nanostructure and tested as an electrochemical sensor for dopamine oxidation; it operated best at a working potential of 0.17 V (vs Ag/AgCl). The developed sensor exhibited a low limit of detection (0.002 µM), a high sensitivity (126 µA. µM
−1
cm
−2
), and a wide linear range (0.2 to 185 µM). The sensor showed a short response time of < 1 s. The sensor’s selectivity was investigated in the presence of coexisting species (uric acid, ascorbic acid, adrenaline, epinephrine, norepinephrine, histamine, serotonin, tyramine, phenethylamine, and glucose) with no effects on dopamine determination results. The developed sensor was also successfully used for determining dopamine concentrations in a real sample.
Graphical abstract</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>34958414</pmid><doi>10.1007/s00604-021-05142-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2102-658X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-3672 |
ispartof | Mikrochimica acta (1966), 2022-01, Vol.189 (1), p.37-37, Article 37 |
issn | 0026-3672 1436-5073 |
language | eng |
recordid | cdi_proquest_miscellaneous_2614754414 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Analytical Chemistry Ascorbic acid Characterization and Evaluation of Materials Charge transfer Chemical sensors Chemistry Chemistry and Materials Science Cobalt Cobalt - chemistry Cobalt oxides Dielectric Spectroscopy - instrumentation Dielectric Spectroscopy - methods Diffraction Dopamine Dopamine - analysis Dopamine - chemistry Electric properties Electrical measurement Electrochemical analysis Electrochemical impedance spectroscopy Electrodes Electrons Enzymes Epinephrine Fourier transforms Functional groups Glassy carbon High resolution electron microscopy Histamine Infrared spectroscopy Investigations Limit of Detection Microengineering Nanochemistry Nanocomposites Nanocomposites - chemistry Nanoparticles Nanostructure Nanotechnology Norepinephrine Organic acids Original Paper Oxidation Oxidation-Reduction Oxides - chemistry Phenols Reproducibility of Results Response time Selectivity Sensors Serotonin Spectrum analysis Uric acid X-rays Zinc Zinc - chemistry Zinc compounds |
title | Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-enzymatic%20electrochemical%20dopamine%20sensing%20probe%20based%20on%20hexagonal%20shape%20zinc-doped%20cobalt%20oxide%20(Zn-Co2O4)%20nanostructure&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Khan,%20Muhammad%20Inam&rft.date=2022-01-01&rft.volume=189&rft.issue=1&rft.spage=37&rft.epage=37&rft.pages=37-37&rft.artnum=37&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-021-05142-z&rft_dat=%3Cgale_proqu%3EA715055357%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614796892&rft_id=info:pmid/34958414&rft_galeid=A715055357&rfr_iscdi=true |