Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure

A non-enzymatic dopamine electrochemical sensing probe was developed. A hexagonal shape zinc-doped cobalt oxide (Zn-Co 2 O 4 ) nanostructure was prepared by a facile hydrothermal approach. The combination of Zn, which has an abundance of electrons, and Co 3 O 4 exhibited a synergistically electron-r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2022-01, Vol.189 (1), p.37-37, Article 37
Hauptverfasser: Khan, Muhammad Inam, Muhammad, Nawshad, Tariq, Muhammad, Nishan, Umar, Razaq, Aamir, Saleh, Tawfik A., Haija, Mohammad Abu, Ismail, Issam, Rahim, Abdur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 1
container_start_page 37
container_title Mikrochimica acta (1966)
container_volume 189
creator Khan, Muhammad Inam
Muhammad, Nawshad
Tariq, Muhammad
Nishan, Umar
Razaq, Aamir
Saleh, Tawfik A.
Haija, Mohammad Abu
Ismail, Issam
Rahim, Abdur
description A non-enzymatic dopamine electrochemical sensing probe was developed. A hexagonal shape zinc-doped cobalt oxide (Zn-Co 2 O 4 ) nanostructure was prepared by a facile hydrothermal approach. The combination of Zn, which has an abundance of electrons, and Co 3 O 4 exhibited a synergistically electron-rich nanocomposite. The crystallinity of the nanostructure was investigated using X-ray diffraction. A scanning electron microscope (SEM) was used to examine the surface morphology, revealing hexagonal nanoparticles with an average particle size of 400 nm. High-resolution transmission electron microscopy (HR-TEM) was used to confirm the nanostructure of the doped material. The nanostructure’s bonding and functional groups were verified using Fourier transform infrared spectroscopy (FTIR). The electrochemical characterization was conducted by using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometry. The resistivity of the electrode was confirmed through EIS and showed that the bare glassy carbon electrode (GCE) exhibited higher charge transfer resistance as compared to modified Zn-Co 2 O 4 /GCE. The sensing probe was developed by modifying the surface of GCE with Zn-Co 2 O 4 nanostructure and tested as an electrochemical sensor for dopamine oxidation; it operated best at a working potential of 0.17 V (vs Ag/AgCl). The developed sensor exhibited a low limit of detection (0.002 µM), a high sensitivity (126 µA. µM −1  cm −2 ), and a wide linear range (0.2 to 185 µM). The sensor showed a short response time of 
doi_str_mv 10.1007/s00604-021-05142-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2614754414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715055357</galeid><sourcerecordid>A715055357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-fd5252608e0f4f19881a6153511f1c9c95fee56faad613ee49421e35e3d1256a3</originalsourceid><addsrcrecordid>eNp9kU9vEzEQxS0EoqHwBTggS1zKwcX_d_dYRW1BqugFLlwsxztOXO3awd6V2hz47DgkUIEQ8mEkz--N3sxD6DWj54zS5n2hVFNJKGeEKiY52T1BCyaFJoo24ilaUMo1EbrhJ-hFKXeUskZz-RydCNmpVjK5QN8_pUgg7h5GOwWHYQA35eQ2MAZnB9ynrR1DBFwglhDXeJvTCvDKFuhxingD93adYiXLxm4B70J0pIpq16WVHSac7kMP-OxrJMvEb-U7HG1MZcqzm-YML9Ezb4cCr471FH25uvy8_EBubq8_Li9uiJOST8T3iiuuaQvUS8-6tmVWMyUUY565znXKAyjtre01EwCyk5yBUCB6xpW24hSdHeZW_99mKJMZQ3EwDDZCmovhmslGyXqSir79C71Lc64rHqlOtx1_pNZ2ABOiT1O2bj_UXDRMUVXNNZU6_wdVX7-_b4rgQ_3_Q8APApdTKRm82eYw2vxgGDX70M0hdFNDNz9DN7sqenN0PK9G6H9LfqVcAXEASm3FNeTHlf4z9gdc27aW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614796892</pqid></control><display><type>article</type><title>Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Khan, Muhammad Inam ; Muhammad, Nawshad ; Tariq, Muhammad ; Nishan, Umar ; Razaq, Aamir ; Saleh, Tawfik A. ; Haija, Mohammad Abu ; Ismail, Issam ; Rahim, Abdur</creator><creatorcontrib>Khan, Muhammad Inam ; Muhammad, Nawshad ; Tariq, Muhammad ; Nishan, Umar ; Razaq, Aamir ; Saleh, Tawfik A. ; Haija, Mohammad Abu ; Ismail, Issam ; Rahim, Abdur</creatorcontrib><description>A non-enzymatic dopamine electrochemical sensing probe was developed. A hexagonal shape zinc-doped cobalt oxide (Zn-Co 2 O 4 ) nanostructure was prepared by a facile hydrothermal approach. The combination of Zn, which has an abundance of electrons, and Co 3 O 4 exhibited a synergistically electron-rich nanocomposite. The crystallinity of the nanostructure was investigated using X-ray diffraction. A scanning electron microscope (SEM) was used to examine the surface morphology, revealing hexagonal nanoparticles with an average particle size of 400 nm. High-resolution transmission electron microscopy (HR-TEM) was used to confirm the nanostructure of the doped material. The nanostructure’s bonding and functional groups were verified using Fourier transform infrared spectroscopy (FTIR). The electrochemical characterization was conducted by using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometry. The resistivity of the electrode was confirmed through EIS and showed that the bare glassy carbon electrode (GCE) exhibited higher charge transfer resistance as compared to modified Zn-Co 2 O 4 /GCE. The sensing probe was developed by modifying the surface of GCE with Zn-Co 2 O 4 nanostructure and tested as an electrochemical sensor for dopamine oxidation; it operated best at a working potential of 0.17 V (vs Ag/AgCl). The developed sensor exhibited a low limit of detection (0.002 µM), a high sensitivity (126 µA. µM −1  cm −2 ), and a wide linear range (0.2 to 185 µM). The sensor showed a short response time of &lt; 1 s. The sensor’s selectivity was investigated in the presence of coexisting species (uric acid, ascorbic acid, adrenaline, epinephrine, norepinephrine, histamine, serotonin, tyramine, phenethylamine, and glucose) with no effects on dopamine determination results. The developed sensor was also successfully used for determining dopamine concentrations in a real sample. Graphical abstract</description><identifier>ISSN: 0026-3672</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-021-05142-z</identifier><identifier>PMID: 34958414</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analytical Chemistry ; Ascorbic acid ; Characterization and Evaluation of Materials ; Charge transfer ; Chemical sensors ; Chemistry ; Chemistry and Materials Science ; Cobalt ; Cobalt - chemistry ; Cobalt oxides ; Dielectric Spectroscopy - instrumentation ; Dielectric Spectroscopy - methods ; Diffraction ; Dopamine ; Dopamine - analysis ; Dopamine - chemistry ; Electric properties ; Electrical measurement ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrodes ; Electrons ; Enzymes ; Epinephrine ; Fourier transforms ; Functional groups ; Glassy carbon ; High resolution electron microscopy ; Histamine ; Infrared spectroscopy ; Investigations ; Limit of Detection ; Microengineering ; Nanochemistry ; Nanocomposites ; Nanocomposites - chemistry ; Nanoparticles ; Nanostructure ; Nanotechnology ; Norepinephrine ; Organic acids ; Original Paper ; Oxidation ; Oxidation-Reduction ; Oxides - chemistry ; Phenols ; Reproducibility of Results ; Response time ; Selectivity ; Sensors ; Serotonin ; Spectrum analysis ; Uric acid ; X-rays ; Zinc ; Zinc - chemistry ; Zinc compounds</subject><ispartof>Mikrochimica acta (1966), 2022-01, Vol.189 (1), p.37-37, Article 37</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-fd5252608e0f4f19881a6153511f1c9c95fee56faad613ee49421e35e3d1256a3</citedby><cites>FETCH-LOGICAL-c442t-fd5252608e0f4f19881a6153511f1c9c95fee56faad613ee49421e35e3d1256a3</cites><orcidid>0000-0002-2102-658X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00604-021-05142-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00604-021-05142-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34958414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Muhammad Inam</creatorcontrib><creatorcontrib>Muhammad, Nawshad</creatorcontrib><creatorcontrib>Tariq, Muhammad</creatorcontrib><creatorcontrib>Nishan, Umar</creatorcontrib><creatorcontrib>Razaq, Aamir</creatorcontrib><creatorcontrib>Saleh, Tawfik A.</creatorcontrib><creatorcontrib>Haija, Mohammad Abu</creatorcontrib><creatorcontrib>Ismail, Issam</creatorcontrib><creatorcontrib>Rahim, Abdur</creatorcontrib><title>Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><addtitle>Mikrochim Acta</addtitle><description>A non-enzymatic dopamine electrochemical sensing probe was developed. A hexagonal shape zinc-doped cobalt oxide (Zn-Co 2 O 4 ) nanostructure was prepared by a facile hydrothermal approach. The combination of Zn, which has an abundance of electrons, and Co 3 O 4 exhibited a synergistically electron-rich nanocomposite. The crystallinity of the nanostructure was investigated using X-ray diffraction. A scanning electron microscope (SEM) was used to examine the surface morphology, revealing hexagonal nanoparticles with an average particle size of 400 nm. High-resolution transmission electron microscopy (HR-TEM) was used to confirm the nanostructure of the doped material. The nanostructure’s bonding and functional groups were verified using Fourier transform infrared spectroscopy (FTIR). The electrochemical characterization was conducted by using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometry. The resistivity of the electrode was confirmed through EIS and showed that the bare glassy carbon electrode (GCE) exhibited higher charge transfer resistance as compared to modified Zn-Co 2 O 4 /GCE. The sensing probe was developed by modifying the surface of GCE with Zn-Co 2 O 4 nanostructure and tested as an electrochemical sensor for dopamine oxidation; it operated best at a working potential of 0.17 V (vs Ag/AgCl). The developed sensor exhibited a low limit of detection (0.002 µM), a high sensitivity (126 µA. µM −1  cm −2 ), and a wide linear range (0.2 to 185 µM). The sensor showed a short response time of &lt; 1 s. The sensor’s selectivity was investigated in the presence of coexisting species (uric acid, ascorbic acid, adrenaline, epinephrine, norepinephrine, histamine, serotonin, tyramine, phenethylamine, and glucose) with no effects on dopamine determination results. The developed sensor was also successfully used for determining dopamine concentrations in a real sample. Graphical abstract</description><subject>Analytical Chemistry</subject><subject>Ascorbic acid</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemical sensors</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Cobalt - chemistry</subject><subject>Cobalt oxides</subject><subject>Dielectric Spectroscopy - instrumentation</subject><subject>Dielectric Spectroscopy - methods</subject><subject>Diffraction</subject><subject>Dopamine</subject><subject>Dopamine - analysis</subject><subject>Dopamine - chemistry</subject><subject>Electric properties</subject><subject>Electrical measurement</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Enzymes</subject><subject>Epinephrine</subject><subject>Fourier transforms</subject><subject>Functional groups</subject><subject>Glassy carbon</subject><subject>High resolution electron microscopy</subject><subject>Histamine</subject><subject>Infrared spectroscopy</subject><subject>Investigations</subject><subject>Limit of Detection</subject><subject>Microengineering</subject><subject>Nanochemistry</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Norepinephrine</subject><subject>Organic acids</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxides - chemistry</subject><subject>Phenols</subject><subject>Reproducibility of Results</subject><subject>Response time</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>Serotonin</subject><subject>Spectrum analysis</subject><subject>Uric acid</subject><subject>X-rays</subject><subject>Zinc</subject><subject>Zinc - chemistry</subject><subject>Zinc compounds</subject><issn>0026-3672</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9vEzEQxS0EoqHwBTggS1zKwcX_d_dYRW1BqugFLlwsxztOXO3awd6V2hz47DgkUIEQ8mEkz--N3sxD6DWj54zS5n2hVFNJKGeEKiY52T1BCyaFJoo24ilaUMo1EbrhJ-hFKXeUskZz-RydCNmpVjK5QN8_pUgg7h5GOwWHYQA35eQ2MAZnB9ynrR1DBFwglhDXeJvTCvDKFuhxingD93adYiXLxm4B70J0pIpq16WVHSac7kMP-OxrJMvEb-U7HG1MZcqzm-YML9Ezb4cCr471FH25uvy8_EBubq8_Li9uiJOST8T3iiuuaQvUS8-6tmVWMyUUY565znXKAyjtre01EwCyk5yBUCB6xpW24hSdHeZW_99mKJMZQ3EwDDZCmovhmslGyXqSir79C71Lc64rHqlOtx1_pNZ2ABOiT1O2bj_UXDRMUVXNNZU6_wdVX7-_b4rgQ_3_Q8APApdTKRm82eYw2vxgGDX70M0hdFNDNz9DN7sqenN0PK9G6H9LfqVcAXEASm3FNeTHlf4z9gdc27aW</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Khan, Muhammad Inam</creator><creator>Muhammad, Nawshad</creator><creator>Tariq, Muhammad</creator><creator>Nishan, Umar</creator><creator>Razaq, Aamir</creator><creator>Saleh, Tawfik A.</creator><creator>Haija, Mohammad Abu</creator><creator>Ismail, Issam</creator><creator>Rahim, Abdur</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2102-658X</orcidid></search><sort><creationdate>20220101</creationdate><title>Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure</title><author>Khan, Muhammad Inam ; Muhammad, Nawshad ; Tariq, Muhammad ; Nishan, Umar ; Razaq, Aamir ; Saleh, Tawfik A. ; Haija, Mohammad Abu ; Ismail, Issam ; Rahim, Abdur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-fd5252608e0f4f19881a6153511f1c9c95fee56faad613ee49421e35e3d1256a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Ascorbic acid</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemical sensors</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Cobalt - chemistry</topic><topic>Cobalt oxides</topic><topic>Dielectric Spectroscopy - instrumentation</topic><topic>Dielectric Spectroscopy - methods</topic><topic>Diffraction</topic><topic>Dopamine</topic><topic>Dopamine - analysis</topic><topic>Dopamine - chemistry</topic><topic>Electric properties</topic><topic>Electrical measurement</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Enzymes</topic><topic>Epinephrine</topic><topic>Fourier transforms</topic><topic>Functional groups</topic><topic>Glassy carbon</topic><topic>High resolution electron microscopy</topic><topic>Histamine</topic><topic>Infrared spectroscopy</topic><topic>Investigations</topic><topic>Limit of Detection</topic><topic>Microengineering</topic><topic>Nanochemistry</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Norepinephrine</topic><topic>Organic acids</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxides - chemistry</topic><topic>Phenols</topic><topic>Reproducibility of Results</topic><topic>Response time</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>Serotonin</topic><topic>Spectrum analysis</topic><topic>Uric acid</topic><topic>X-rays</topic><topic>Zinc</topic><topic>Zinc - chemistry</topic><topic>Zinc compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Muhammad Inam</creatorcontrib><creatorcontrib>Muhammad, Nawshad</creatorcontrib><creatorcontrib>Tariq, Muhammad</creatorcontrib><creatorcontrib>Nishan, Umar</creatorcontrib><creatorcontrib>Razaq, Aamir</creatorcontrib><creatorcontrib>Saleh, Tawfik A.</creatorcontrib><creatorcontrib>Haija, Mohammad Abu</creatorcontrib><creatorcontrib>Ismail, Issam</creatorcontrib><creatorcontrib>Rahim, Abdur</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Muhammad Inam</au><au>Muhammad, Nawshad</au><au>Tariq, Muhammad</au><au>Nishan, Umar</au><au>Razaq, Aamir</au><au>Saleh, Tawfik A.</au><au>Haija, Mohammad Abu</au><au>Ismail, Issam</au><au>Rahim, Abdur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><addtitle>Mikrochim Acta</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>189</volume><issue>1</issue><spage>37</spage><epage>37</epage><pages>37-37</pages><artnum>37</artnum><issn>0026-3672</issn><eissn>1436-5073</eissn><abstract>A non-enzymatic dopamine electrochemical sensing probe was developed. A hexagonal shape zinc-doped cobalt oxide (Zn-Co 2 O 4 ) nanostructure was prepared by a facile hydrothermal approach. The combination of Zn, which has an abundance of electrons, and Co 3 O 4 exhibited a synergistically electron-rich nanocomposite. The crystallinity of the nanostructure was investigated using X-ray diffraction. A scanning electron microscope (SEM) was used to examine the surface morphology, revealing hexagonal nanoparticles with an average particle size of 400 nm. High-resolution transmission electron microscopy (HR-TEM) was used to confirm the nanostructure of the doped material. The nanostructure’s bonding and functional groups were verified using Fourier transform infrared spectroscopy (FTIR). The electrochemical characterization was conducted by using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometry. The resistivity of the electrode was confirmed through EIS and showed that the bare glassy carbon electrode (GCE) exhibited higher charge transfer resistance as compared to modified Zn-Co 2 O 4 /GCE. The sensing probe was developed by modifying the surface of GCE with Zn-Co 2 O 4 nanostructure and tested as an electrochemical sensor for dopamine oxidation; it operated best at a working potential of 0.17 V (vs Ag/AgCl). The developed sensor exhibited a low limit of detection (0.002 µM), a high sensitivity (126 µA. µM −1  cm −2 ), and a wide linear range (0.2 to 185 µM). The sensor showed a short response time of &lt; 1 s. The sensor’s selectivity was investigated in the presence of coexisting species (uric acid, ascorbic acid, adrenaline, epinephrine, norepinephrine, histamine, serotonin, tyramine, phenethylamine, and glucose) with no effects on dopamine determination results. The developed sensor was also successfully used for determining dopamine concentrations in a real sample. Graphical abstract</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><pmid>34958414</pmid><doi>10.1007/s00604-021-05142-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2102-658X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-3672
ispartof Mikrochimica acta (1966), 2022-01, Vol.189 (1), p.37-37, Article 37
issn 0026-3672
1436-5073
language eng
recordid cdi_proquest_miscellaneous_2614754414
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Ascorbic acid
Characterization and Evaluation of Materials
Charge transfer
Chemical sensors
Chemistry
Chemistry and Materials Science
Cobalt
Cobalt - chemistry
Cobalt oxides
Dielectric Spectroscopy - instrumentation
Dielectric Spectroscopy - methods
Diffraction
Dopamine
Dopamine - analysis
Dopamine - chemistry
Electric properties
Electrical measurement
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrodes
Electrons
Enzymes
Epinephrine
Fourier transforms
Functional groups
Glassy carbon
High resolution electron microscopy
Histamine
Infrared spectroscopy
Investigations
Limit of Detection
Microengineering
Nanochemistry
Nanocomposites
Nanocomposites - chemistry
Nanoparticles
Nanostructure
Nanotechnology
Norepinephrine
Organic acids
Original Paper
Oxidation
Oxidation-Reduction
Oxides - chemistry
Phenols
Reproducibility of Results
Response time
Selectivity
Sensors
Serotonin
Spectrum analysis
Uric acid
X-rays
Zinc
Zinc - chemistry
Zinc compounds
title Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-enzymatic%20electrochemical%20dopamine%20sensing%20probe%20based%20on%20hexagonal%20shape%20zinc-doped%20cobalt%20oxide%20(Zn-Co2O4)%20nanostructure&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Khan,%20Muhammad%20Inam&rft.date=2022-01-01&rft.volume=189&rft.issue=1&rft.spage=37&rft.epage=37&rft.pages=37-37&rft.artnum=37&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-021-05142-z&rft_dat=%3Cgale_proqu%3EA715055357%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614796892&rft_id=info:pmid/34958414&rft_galeid=A715055357&rfr_iscdi=true