Microbial synthesis and the characterization of metal-substituted magnetites

The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. We describe a bacterially mediated electrochemical process in which metal (Co, Cr, or Ni)-substituted magnetite powders were synthesized by iron(III)-reducing bacteria under anaerobic condit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth Planet Sci. Lett 2001-01, Vol.118 (10), p.529-534
Hauptverfasser: Roh, Y, Lauf, R.J, McMillan, A.D, Zhang, C, Rawn, C.J, Bai, J, Phelps, T.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 534
container_issue 10
container_start_page 529
container_title Earth Planet Sci. Lett
container_volume 118
creator Roh, Y
Lauf, R.J
McMillan, A.D
Zhang, C
Rawn, C.J
Bai, J
Phelps, T.J
description The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. We describe a bacterially mediated electrochemical process in which metal (Co, Cr, or Ni)-substituted magnetite powders were synthesized by iron(III)-reducing bacteria under anaerobic conditions. Amorphous Fe(III) oxyhydroxides plus soluble metal species (Co, Cr, Ni) comprise the electron acceptor and hydrogen or simple organics comprise the electron donor. The microbial processes produced copious amount of nm-sized, metal-substituted magnetite crystals. Chemical analysis and X-ray powder diffraction analysis showed that metals such as Co, Cr, and Ni were substituted into biologically facilitated magnetites. These results suggest that the bacteria may be viewed as a nonspecific source of electrons at a potential that can be calculated or surmised based on the underlying thermodynamics. Microbially facilitated synthesis of the metal-substituted magnetites at near ambient temperatures may expand the possible use of the specialized ferromagnetic particles.
doi_str_mv 10.1016/S0038-1098(01)00146-6
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_26145725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038109801001466</els_id><sourcerecordid>26145725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-56d1e0e7574fcb7bc4b22a2e315d39def1d45cc4dbfb01fc18fd29dc3d1dcd9f3</originalsourceid><addsrcrecordid>eNqFkF1rFTEQhkOp4LH6E4QViujFamY_kt0rkeIXHPGieh2yk0lPZE-2zeQI7a8321PEu15lAs_M-_II8RLkO5Cg3l9K2Q41yHF4I-GtlNCpWp2IDQx6rBut1KnY_EOeimfMv6WUetCwEdvvAdMyBTtXfBvzjjhwZaOryljhziaLmVK4szkssVp8tads55oPE-eQD5lctbdXkcqH-Ll44u3M9OLhPRO_Pn_6efG13v748u3i47bGdmxz3SsHJEn3uvM46Qm7qWlsQy30rh0deXBdj9i5yU8SPMLgXTM6bB04dKNvz8Sr492llDCMJRt3uMRImI0eVdeowrw-MtdpuTkQZ7MPjDTPNtJyYNMo6Hrd9AXsj2DxwJzIm-sU9jbdGpBm9Wvu_ZpVnpFg7v2aNeD8IcAy2tknGzHwf8tlC2TBPhwxKkL-BEprX4pILqS1rlvCI0F_AQ5fkN4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26145725</pqid></control><display><type>article</type><title>Microbial synthesis and the characterization of metal-substituted magnetites</title><source>Elsevier ScienceDirect Journals</source><creator>Roh, Y ; Lauf, R.J ; McMillan, A.D ; Zhang, C ; Rawn, C.J ; Bai, J ; Phelps, T.J</creator><creatorcontrib>Roh, Y ; Lauf, R.J ; McMillan, A.D ; Zhang, C ; Rawn, C.J ; Bai, J ; Phelps, T.J ; Brookhaven National Lab., Upton, NY (US) ; National Synchrotron Light Source (US)</creatorcontrib><description>The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. We describe a bacterially mediated electrochemical process in which metal (Co, Cr, or Ni)-substituted magnetite powders were synthesized by iron(III)-reducing bacteria under anaerobic conditions. Amorphous Fe(III) oxyhydroxides plus soluble metal species (Co, Cr, Ni) comprise the electron acceptor and hydrogen or simple organics comprise the electron donor. The microbial processes produced copious amount of nm-sized, metal-substituted magnetite crystals. Chemical analysis and X-ray powder diffraction analysis showed that metals such as Co, Cr, and Ni were substituted into biologically facilitated magnetites. These results suggest that the bacteria may be viewed as a nonspecific source of electrons at a potential that can be calculated or surmised based on the underlying thermodynamics. Microbially facilitated synthesis of the metal-substituted magnetites at near ambient temperatures may expand the possible use of the specialized ferromagnetic particles.</description><identifier>ISSN: 0038-1098</identifier><identifier>EISSN: 1879-2766</identifier><identifier>DOI: 10.1016/S0038-1098(01)00146-6</identifier><identifier>CODEN: SSCOA4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>A. Magnetically ordered materials ; BIODEGRADATION ; C. Scanning electron microscopy ; C. X-ray scattering ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; ENVIRONMENTAL SCIENCES ; Exact sciences and technology ; Fine-particle systems ; Magnetic properties and materials ; MAGNETITE ; Materials science ; METALS ; MICROORGANISMS ; Nanoscale materials and structures: fabrication and characterization ; NATIONAL SYNCHROTRON LIGHT SOURCE ; Physics ; Small particles and nanoscale materials ; Studies of specific magnetic materials</subject><ispartof>Earth Planet Sci. Lett, 2001-01, Vol.118 (10), p.529-534</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-56d1e0e7574fcb7bc4b22a2e315d39def1d45cc4dbfb01fc18fd29dc3d1dcd9f3</citedby><cites>FETCH-LOGICAL-c393t-56d1e0e7574fcb7bc4b22a2e315d39def1d45cc4dbfb01fc18fd29dc3d1dcd9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0038109801001466$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1000310$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/796426$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Roh, Y</creatorcontrib><creatorcontrib>Lauf, R.J</creatorcontrib><creatorcontrib>McMillan, A.D</creatorcontrib><creatorcontrib>Zhang, C</creatorcontrib><creatorcontrib>Rawn, C.J</creatorcontrib><creatorcontrib>Bai, J</creatorcontrib><creatorcontrib>Phelps, T.J</creatorcontrib><creatorcontrib>Brookhaven National Lab., Upton, NY (US)</creatorcontrib><creatorcontrib>National Synchrotron Light Source (US)</creatorcontrib><title>Microbial synthesis and the characterization of metal-substituted magnetites</title><title>Earth Planet Sci. Lett</title><description>The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. We describe a bacterially mediated electrochemical process in which metal (Co, Cr, or Ni)-substituted magnetite powders were synthesized by iron(III)-reducing bacteria under anaerobic conditions. Amorphous Fe(III) oxyhydroxides plus soluble metal species (Co, Cr, Ni) comprise the electron acceptor and hydrogen or simple organics comprise the electron donor. The microbial processes produced copious amount of nm-sized, metal-substituted magnetite crystals. Chemical analysis and X-ray powder diffraction analysis showed that metals such as Co, Cr, and Ni were substituted into biologically facilitated magnetites. These results suggest that the bacteria may be viewed as a nonspecific source of electrons at a potential that can be calculated or surmised based on the underlying thermodynamics. Microbially facilitated synthesis of the metal-substituted magnetites at near ambient temperatures may expand the possible use of the specialized ferromagnetic particles.</description><subject>A. Magnetically ordered materials</subject><subject>BIODEGRADATION</subject><subject>C. Scanning electron microscopy</subject><subject>C. X-ray scattering</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Exact sciences and technology</subject><subject>Fine-particle systems</subject><subject>Magnetic properties and materials</subject><subject>MAGNETITE</subject><subject>Materials science</subject><subject>METALS</subject><subject>MICROORGANISMS</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>NATIONAL SYNCHROTRON LIGHT SOURCE</subject><subject>Physics</subject><subject>Small particles and nanoscale materials</subject><subject>Studies of specific magnetic materials</subject><issn>0038-1098</issn><issn>1879-2766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkF1rFTEQhkOp4LH6E4QViujFamY_kt0rkeIXHPGieh2yk0lPZE-2zeQI7a8321PEu15lAs_M-_II8RLkO5Cg3l9K2Q41yHF4I-GtlNCpWp2IDQx6rBut1KnY_EOeimfMv6WUetCwEdvvAdMyBTtXfBvzjjhwZaOryljhziaLmVK4szkssVp8tads55oPE-eQD5lctbdXkcqH-Ll44u3M9OLhPRO_Pn_6efG13v748u3i47bGdmxz3SsHJEn3uvM46Qm7qWlsQy30rh0deXBdj9i5yU8SPMLgXTM6bB04dKNvz8Sr492llDCMJRt3uMRImI0eVdeowrw-MtdpuTkQZ7MPjDTPNtJyYNMo6Hrd9AXsj2DxwJzIm-sU9jbdGpBm9Wvu_ZpVnpFg7v2aNeD8IcAy2tknGzHwf8tlC2TBPhwxKkL-BEprX4pILqS1rlvCI0F_AQ5fkN4</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Roh, Y</creator><creator>Lauf, R.J</creator><creator>McMillan, A.D</creator><creator>Zhang, C</creator><creator>Rawn, C.J</creator><creator>Bai, J</creator><creator>Phelps, T.J</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20010101</creationdate><title>Microbial synthesis and the characterization of metal-substituted magnetites</title><author>Roh, Y ; Lauf, R.J ; McMillan, A.D ; Zhang, C ; Rawn, C.J ; Bai, J ; Phelps, T.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-56d1e0e7574fcb7bc4b22a2e315d39def1d45cc4dbfb01fc18fd29dc3d1dcd9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>A. Magnetically ordered materials</topic><topic>BIODEGRADATION</topic><topic>C. Scanning electron microscopy</topic><topic>C. X-ray scattering</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Exact sciences and technology</topic><topic>Fine-particle systems</topic><topic>Magnetic properties and materials</topic><topic>MAGNETITE</topic><topic>Materials science</topic><topic>METALS</topic><topic>MICROORGANISMS</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>NATIONAL SYNCHROTRON LIGHT SOURCE</topic><topic>Physics</topic><topic>Small particles and nanoscale materials</topic><topic>Studies of specific magnetic materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roh, Y</creatorcontrib><creatorcontrib>Lauf, R.J</creatorcontrib><creatorcontrib>McMillan, A.D</creatorcontrib><creatorcontrib>Zhang, C</creatorcontrib><creatorcontrib>Rawn, C.J</creatorcontrib><creatorcontrib>Bai, J</creatorcontrib><creatorcontrib>Phelps, T.J</creatorcontrib><creatorcontrib>Brookhaven National Lab., Upton, NY (US)</creatorcontrib><creatorcontrib>National Synchrotron Light Source (US)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Earth Planet Sci. Lett</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roh, Y</au><au>Lauf, R.J</au><au>McMillan, A.D</au><au>Zhang, C</au><au>Rawn, C.J</au><au>Bai, J</au><au>Phelps, T.J</au><aucorp>Brookhaven National Lab., Upton, NY (US)</aucorp><aucorp>National Synchrotron Light Source (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial synthesis and the characterization of metal-substituted magnetites</atitle><jtitle>Earth Planet Sci. Lett</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>118</volume><issue>10</issue><spage>529</spage><epage>534</epage><pages>529-534</pages><issn>0038-1098</issn><eissn>1879-2766</eissn><coden>SSCOA4</coden><abstract>The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. We describe a bacterially mediated electrochemical process in which metal (Co, Cr, or Ni)-substituted magnetite powders were synthesized by iron(III)-reducing bacteria under anaerobic conditions. Amorphous Fe(III) oxyhydroxides plus soluble metal species (Co, Cr, Ni) comprise the electron acceptor and hydrogen or simple organics comprise the electron donor. The microbial processes produced copious amount of nm-sized, metal-substituted magnetite crystals. Chemical analysis and X-ray powder diffraction analysis showed that metals such as Co, Cr, and Ni were substituted into biologically facilitated magnetites. These results suggest that the bacteria may be viewed as a nonspecific source of electrons at a potential that can be calculated or surmised based on the underlying thermodynamics. Microbially facilitated synthesis of the metal-substituted magnetites at near ambient temperatures may expand the possible use of the specialized ferromagnetic particles.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0038-1098(01)00146-6</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-1098
ispartof Earth Planet Sci. Lett, 2001-01, Vol.118 (10), p.529-534
issn 0038-1098
1879-2766
language eng
recordid cdi_proquest_miscellaneous_26145725
source Elsevier ScienceDirect Journals
subjects A. Magnetically ordered materials
BIODEGRADATION
C. Scanning electron microscopy
C. X-ray scattering
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
ENVIRONMENTAL SCIENCES
Exact sciences and technology
Fine-particle systems
Magnetic properties and materials
MAGNETITE
Materials science
METALS
MICROORGANISMS
Nanoscale materials and structures: fabrication and characterization
NATIONAL SYNCHROTRON LIGHT SOURCE
Physics
Small particles and nanoscale materials
Studies of specific magnetic materials
title Microbial synthesis and the characterization of metal-substituted magnetites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20synthesis%20and%20the%20characterization%20of%20metal-substituted%20magnetites&rft.jtitle=Earth%20Planet%20Sci.%20Lett&rft.au=Roh,%20Y&rft.aucorp=Brookhaven%20National%20Lab.,%20Upton,%20NY%20(US)&rft.date=2001-01-01&rft.volume=118&rft.issue=10&rft.spage=529&rft.epage=534&rft.pages=529-534&rft.issn=0038-1098&rft.eissn=1879-2766&rft.coden=SSCOA4&rft_id=info:doi/10.1016/S0038-1098(01)00146-6&rft_dat=%3Cproquest_osti_%3E26145725%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26145725&rft_id=info:pmid/&rft_els_id=S0038109801001466&rfr_iscdi=true