Microbial synthesis and the characterization of metal-substituted magnetites
The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. We describe a bacterially mediated electrochemical process in which metal (Co, Cr, or Ni)-substituted magnetite powders were synthesized by iron(III)-reducing bacteria under anaerobic condit...
Gespeichert in:
Veröffentlicht in: | Earth Planet Sci. Lett 2001-01, Vol.118 (10), p.529-534 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 534 |
---|---|
container_issue | 10 |
container_start_page | 529 |
container_title | Earth Planet Sci. Lett |
container_volume | 118 |
creator | Roh, Y Lauf, R.J McMillan, A.D Zhang, C Rawn, C.J Bai, J Phelps, T.J |
description | The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. We describe a bacterially mediated electrochemical process in which metal (Co, Cr, or Ni)-substituted magnetite powders were synthesized by iron(III)-reducing bacteria under anaerobic conditions. Amorphous Fe(III) oxyhydroxides plus soluble metal species (Co, Cr, Ni) comprise the electron acceptor and hydrogen or simple organics comprise the electron donor. The microbial processes produced copious amount of nm-sized, metal-substituted magnetite crystals. Chemical analysis and X-ray powder diffraction analysis showed that metals such as Co, Cr, and Ni were substituted into biologically facilitated magnetites. These results suggest that the bacteria may be viewed as a nonspecific source of electrons at a potential that can be calculated or surmised based on the underlying thermodynamics. Microbially facilitated synthesis of the metal-substituted magnetites at near ambient temperatures may expand the possible use of the specialized ferromagnetic particles. |
doi_str_mv | 10.1016/S0038-1098(01)00146-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_26145725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038109801001466</els_id><sourcerecordid>26145725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-56d1e0e7574fcb7bc4b22a2e315d39def1d45cc4dbfb01fc18fd29dc3d1dcd9f3</originalsourceid><addsrcrecordid>eNqFkF1rFTEQhkOp4LH6E4QViujFamY_kt0rkeIXHPGieh2yk0lPZE-2zeQI7a8321PEu15lAs_M-_II8RLkO5Cg3l9K2Q41yHF4I-GtlNCpWp2IDQx6rBut1KnY_EOeimfMv6WUetCwEdvvAdMyBTtXfBvzjjhwZaOryljhziaLmVK4szkssVp8tads55oPE-eQD5lctbdXkcqH-Ll44u3M9OLhPRO_Pn_6efG13v748u3i47bGdmxz3SsHJEn3uvM46Qm7qWlsQy30rh0deXBdj9i5yU8SPMLgXTM6bB04dKNvz8Sr492llDCMJRt3uMRImI0eVdeowrw-MtdpuTkQZ7MPjDTPNtJyYNMo6Hrd9AXsj2DxwJzIm-sU9jbdGpBm9Wvu_ZpVnpFg7v2aNeD8IcAy2tknGzHwf8tlC2TBPhwxKkL-BEprX4pILqS1rlvCI0F_AQ5fkN4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26145725</pqid></control><display><type>article</type><title>Microbial synthesis and the characterization of metal-substituted magnetites</title><source>Elsevier ScienceDirect Journals</source><creator>Roh, Y ; Lauf, R.J ; McMillan, A.D ; Zhang, C ; Rawn, C.J ; Bai, J ; Phelps, T.J</creator><creatorcontrib>Roh, Y ; Lauf, R.J ; McMillan, A.D ; Zhang, C ; Rawn, C.J ; Bai, J ; Phelps, T.J ; Brookhaven National Lab., Upton, NY (US) ; National Synchrotron Light Source (US)</creatorcontrib><description>The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. We describe a bacterially mediated electrochemical process in which metal (Co, Cr, or Ni)-substituted magnetite powders were synthesized by iron(III)-reducing bacteria under anaerobic conditions. Amorphous Fe(III) oxyhydroxides plus soluble metal species (Co, Cr, Ni) comprise the electron acceptor and hydrogen or simple organics comprise the electron donor. The microbial processes produced copious amount of nm-sized, metal-substituted magnetite crystals. Chemical analysis and X-ray powder diffraction analysis showed that metals such as Co, Cr, and Ni were substituted into biologically facilitated magnetites. These results suggest that the bacteria may be viewed as a nonspecific source of electrons at a potential that can be calculated or surmised based on the underlying thermodynamics. Microbially facilitated synthesis of the metal-substituted magnetites at near ambient temperatures may expand the possible use of the specialized ferromagnetic particles.</description><identifier>ISSN: 0038-1098</identifier><identifier>EISSN: 1879-2766</identifier><identifier>DOI: 10.1016/S0038-1098(01)00146-6</identifier><identifier>CODEN: SSCOA4</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>A. Magnetically ordered materials ; BIODEGRADATION ; C. Scanning electron microscopy ; C. X-ray scattering ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; ENVIRONMENTAL SCIENCES ; Exact sciences and technology ; Fine-particle systems ; Magnetic properties and materials ; MAGNETITE ; Materials science ; METALS ; MICROORGANISMS ; Nanoscale materials and structures: fabrication and characterization ; NATIONAL SYNCHROTRON LIGHT SOURCE ; Physics ; Small particles and nanoscale materials ; Studies of specific magnetic materials</subject><ispartof>Earth Planet Sci. Lett, 2001-01, Vol.118 (10), p.529-534</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-56d1e0e7574fcb7bc4b22a2e315d39def1d45cc4dbfb01fc18fd29dc3d1dcd9f3</citedby><cites>FETCH-LOGICAL-c393t-56d1e0e7574fcb7bc4b22a2e315d39def1d45cc4dbfb01fc18fd29dc3d1dcd9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0038109801001466$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1000310$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/796426$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Roh, Y</creatorcontrib><creatorcontrib>Lauf, R.J</creatorcontrib><creatorcontrib>McMillan, A.D</creatorcontrib><creatorcontrib>Zhang, C</creatorcontrib><creatorcontrib>Rawn, C.J</creatorcontrib><creatorcontrib>Bai, J</creatorcontrib><creatorcontrib>Phelps, T.J</creatorcontrib><creatorcontrib>Brookhaven National Lab., Upton, NY (US)</creatorcontrib><creatorcontrib>National Synchrotron Light Source (US)</creatorcontrib><title>Microbial synthesis and the characterization of metal-substituted magnetites</title><title>Earth Planet Sci. Lett</title><description>The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. We describe a bacterially mediated electrochemical process in which metal (Co, Cr, or Ni)-substituted magnetite powders were synthesized by iron(III)-reducing bacteria under anaerobic conditions. Amorphous Fe(III) oxyhydroxides plus soluble metal species (Co, Cr, Ni) comprise the electron acceptor and hydrogen or simple organics comprise the electron donor. The microbial processes produced copious amount of nm-sized, metal-substituted magnetite crystals. Chemical analysis and X-ray powder diffraction analysis showed that metals such as Co, Cr, and Ni were substituted into biologically facilitated magnetites. These results suggest that the bacteria may be viewed as a nonspecific source of electrons at a potential that can be calculated or surmised based on the underlying thermodynamics. Microbially facilitated synthesis of the metal-substituted magnetites at near ambient temperatures may expand the possible use of the specialized ferromagnetic particles.</description><subject>A. Magnetically ordered materials</subject><subject>BIODEGRADATION</subject><subject>C. Scanning electron microscopy</subject><subject>C. X-ray scattering</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Exact sciences and technology</subject><subject>Fine-particle systems</subject><subject>Magnetic properties and materials</subject><subject>MAGNETITE</subject><subject>Materials science</subject><subject>METALS</subject><subject>MICROORGANISMS</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>NATIONAL SYNCHROTRON LIGHT SOURCE</subject><subject>Physics</subject><subject>Small particles and nanoscale materials</subject><subject>Studies of specific magnetic materials</subject><issn>0038-1098</issn><issn>1879-2766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkF1rFTEQhkOp4LH6E4QViujFamY_kt0rkeIXHPGieh2yk0lPZE-2zeQI7a8321PEu15lAs_M-_II8RLkO5Cg3l9K2Q41yHF4I-GtlNCpWp2IDQx6rBut1KnY_EOeimfMv6WUetCwEdvvAdMyBTtXfBvzjjhwZaOryljhziaLmVK4szkssVp8tads55oPE-eQD5lctbdXkcqH-Ll44u3M9OLhPRO_Pn_6efG13v748u3i47bGdmxz3SsHJEn3uvM46Qm7qWlsQy30rh0deXBdj9i5yU8SPMLgXTM6bB04dKNvz8Sr492llDCMJRt3uMRImI0eVdeowrw-MtdpuTkQZ7MPjDTPNtJyYNMo6Hrd9AXsj2DxwJzIm-sU9jbdGpBm9Wvu_ZpVnpFg7v2aNeD8IcAy2tknGzHwf8tlC2TBPhwxKkL-BEprX4pILqS1rlvCI0F_AQ5fkN4</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Roh, Y</creator><creator>Lauf, R.J</creator><creator>McMillan, A.D</creator><creator>Zhang, C</creator><creator>Rawn, C.J</creator><creator>Bai, J</creator><creator>Phelps, T.J</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20010101</creationdate><title>Microbial synthesis and the characterization of metal-substituted magnetites</title><author>Roh, Y ; Lauf, R.J ; McMillan, A.D ; Zhang, C ; Rawn, C.J ; Bai, J ; Phelps, T.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-56d1e0e7574fcb7bc4b22a2e315d39def1d45cc4dbfb01fc18fd29dc3d1dcd9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>A. Magnetically ordered materials</topic><topic>BIODEGRADATION</topic><topic>C. Scanning electron microscopy</topic><topic>C. X-ray scattering</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Exact sciences and technology</topic><topic>Fine-particle systems</topic><topic>Magnetic properties and materials</topic><topic>MAGNETITE</topic><topic>Materials science</topic><topic>METALS</topic><topic>MICROORGANISMS</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>NATIONAL SYNCHROTRON LIGHT SOURCE</topic><topic>Physics</topic><topic>Small particles and nanoscale materials</topic><topic>Studies of specific magnetic materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roh, Y</creatorcontrib><creatorcontrib>Lauf, R.J</creatorcontrib><creatorcontrib>McMillan, A.D</creatorcontrib><creatorcontrib>Zhang, C</creatorcontrib><creatorcontrib>Rawn, C.J</creatorcontrib><creatorcontrib>Bai, J</creatorcontrib><creatorcontrib>Phelps, T.J</creatorcontrib><creatorcontrib>Brookhaven National Lab., Upton, NY (US)</creatorcontrib><creatorcontrib>National Synchrotron Light Source (US)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Earth Planet Sci. Lett</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roh, Y</au><au>Lauf, R.J</au><au>McMillan, A.D</au><au>Zhang, C</au><au>Rawn, C.J</au><au>Bai, J</au><au>Phelps, T.J</au><aucorp>Brookhaven National Lab., Upton, NY (US)</aucorp><aucorp>National Synchrotron Light Source (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial synthesis and the characterization of metal-substituted magnetites</atitle><jtitle>Earth Planet Sci. Lett</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>118</volume><issue>10</issue><spage>529</spage><epage>534</epage><pages>529-534</pages><issn>0038-1098</issn><eissn>1879-2766</eissn><coden>SSCOA4</coden><abstract>The use of bacteria as a novel biotechnology to facilitate the production of nanoparticles is in its infancy. We describe a bacterially mediated electrochemical process in which metal (Co, Cr, or Ni)-substituted magnetite powders were synthesized by iron(III)-reducing bacteria under anaerobic conditions. Amorphous Fe(III) oxyhydroxides plus soluble metal species (Co, Cr, Ni) comprise the electron acceptor and hydrogen or simple organics comprise the electron donor. The microbial processes produced copious amount of nm-sized, metal-substituted magnetite crystals. Chemical analysis and X-ray powder diffraction analysis showed that metals such as Co, Cr, and Ni were substituted into biologically facilitated magnetites. These results suggest that the bacteria may be viewed as a nonspecific source of electrons at a potential that can be calculated or surmised based on the underlying thermodynamics. Microbially facilitated synthesis of the metal-substituted magnetites at near ambient temperatures may expand the possible use of the specialized ferromagnetic particles.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0038-1098(01)00146-6</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-1098 |
ispartof | Earth Planet Sci. Lett, 2001-01, Vol.118 (10), p.529-534 |
issn | 0038-1098 1879-2766 |
language | eng |
recordid | cdi_proquest_miscellaneous_26145725 |
source | Elsevier ScienceDirect Journals |
subjects | A. Magnetically ordered materials BIODEGRADATION C. Scanning electron microscopy C. X-ray scattering Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology ENVIRONMENTAL SCIENCES Exact sciences and technology Fine-particle systems Magnetic properties and materials MAGNETITE Materials science METALS MICROORGANISMS Nanoscale materials and structures: fabrication and characterization NATIONAL SYNCHROTRON LIGHT SOURCE Physics Small particles and nanoscale materials Studies of specific magnetic materials |
title | Microbial synthesis and the characterization of metal-substituted magnetites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A25%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20synthesis%20and%20the%20characterization%20of%20metal-substituted%20magnetites&rft.jtitle=Earth%20Planet%20Sci.%20Lett&rft.au=Roh,%20Y&rft.aucorp=Brookhaven%20National%20Lab.,%20Upton,%20NY%20(US)&rft.date=2001-01-01&rft.volume=118&rft.issue=10&rft.spage=529&rft.epage=534&rft.pages=529-534&rft.issn=0038-1098&rft.eissn=1879-2766&rft.coden=SSCOA4&rft_id=info:doi/10.1016/S0038-1098(01)00146-6&rft_dat=%3Cproquest_osti_%3E26145725%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26145725&rft_id=info:pmid/&rft_els_id=S0038109801001466&rfr_iscdi=true |