Efficient automatic analysis of camera work and microsegmentation of video using spatiotemporal images
The shot has been regarded as a fundamental unit for the application of digital manipulation to a video. Various techniques have been developed to detect automatically shot changes. But a sequence shot can be so long and complex that it has to be further decomposed into smaller units for more flexib...
Gespeichert in:
Veröffentlicht in: | Signal processing. Image communication 1996, Vol.8 (4), p.295-307 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 307 |
---|---|
container_issue | 4 |
container_start_page | 295 |
container_title | Signal processing. Image communication |
container_volume | 8 |
creator | Joly, Philippe Kim, Hae-Kwang |
description | The shot has been regarded as a fundamental unit for the application of digital manipulation to a video. Various techniques have been developed to detect automatically shot changes. But a sequence shot can be so long and complex that it has to be further decomposed into smaller units for more flexible and detailed manipulation. A sequence shot can be segmented into shot segments, each of which keeps a homogeneous camera motion. Camera work has important significance that reflect the intention of video producers. Camera work analysis and segmentation of a sequence shot into shot segments can help in choosing a representative image for a shot. Following concepts introduced by Tonomura et al. (1993), we propose an efficient method for the automatic detection of camera work changes using spatiotemporal images called X-ray images. We introduce various steps in the spatiotemporal image analysis process which significantly improves its robustness and decreases its computational complexity. |
doi_str_mv | 10.1016/0923-5965(95)00054-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26145619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0923596595000542</els_id><sourcerecordid>26145619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-69c30b623e25108ff22a47e2cc4cb1d76dee2f562db51cd45cb77d02831d8f2b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw85iR6qSdqk7UWQZf2ABS96DmkyWaJtU5N2Zf-9qSsePQ0Mz_sy8yB0QckNJVTckprlGa8Fv6r5NSGEFxk7QAtalXXGRFkeosUfcoxOYnxPECtIvUB2Za3TDvoRq2n0nRqdxqpX7S66iL3FWnUQFP7y4SPtDe6cDj7CpkuRBPt-hrbOgMdTdP0Gx2Fej9ANPqgWu05tIJ6hI6vaCOe_8xS9Paxel0_Z-uXxeXm_znSe8zETtc5JI1gOjFNSWcuYKkpgWhe6oaYUBoBZLphpONWm4LopS0NYlVNTWdbkp-hy3zsE_zlBHGXnooa2VT34KUomaMEFrRNY7MH5mxjAyiGkU8NOUiJnqXI2JmdjsubyR6pkKXa3j0F6YusgyDjL02BcAD1K493_Bd_2sYB_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26145619</pqid></control><display><type>article</type><title>Efficient automatic analysis of camera work and microsegmentation of video using spatiotemporal images</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Joly, Philippe ; Kim, Hae-Kwang</creator><creatorcontrib>Joly, Philippe ; Kim, Hae-Kwang</creatorcontrib><description>The shot has been regarded as a fundamental unit for the application of digital manipulation to a video. Various techniques have been developed to detect automatically shot changes. But a sequence shot can be so long and complex that it has to be further decomposed into smaller units for more flexible and detailed manipulation. A sequence shot can be segmented into shot segments, each of which keeps a homogeneous camera motion. Camera work has important significance that reflect the intention of video producers. Camera work analysis and segmentation of a sequence shot into shot segments can help in choosing a representative image for a shot. Following concepts introduced by Tonomura et al. (1993), we propose an efficient method for the automatic detection of camera work changes using spatiotemporal images called X-ray images. We introduce various steps in the spatiotemporal image analysis process which significantly improves its robustness and decreases its computational complexity.</description><identifier>ISSN: 0923-5965</identifier><identifier>EISSN: 1879-2677</identifier><identifier>DOI: 10.1016/0923-5965(95)00054-2</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Camera work ; Image analysis ; Segmentation ; Spatiotemporal images ; Video</subject><ispartof>Signal processing. Image communication, 1996, Vol.8 (4), p.295-307</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-69c30b623e25108ff22a47e2cc4cb1d76dee2f562db51cd45cb77d02831d8f2b3</citedby><cites>FETCH-LOGICAL-c335t-69c30b623e25108ff22a47e2cc4cb1d76dee2f562db51cd45cb77d02831d8f2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0923-5965(95)00054-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Joly, Philippe</creatorcontrib><creatorcontrib>Kim, Hae-Kwang</creatorcontrib><title>Efficient automatic analysis of camera work and microsegmentation of video using spatiotemporal images</title><title>Signal processing. Image communication</title><description>The shot has been regarded as a fundamental unit for the application of digital manipulation to a video. Various techniques have been developed to detect automatically shot changes. But a sequence shot can be so long and complex that it has to be further decomposed into smaller units for more flexible and detailed manipulation. A sequence shot can be segmented into shot segments, each of which keeps a homogeneous camera motion. Camera work has important significance that reflect the intention of video producers. Camera work analysis and segmentation of a sequence shot into shot segments can help in choosing a representative image for a shot. Following concepts introduced by Tonomura et al. (1993), we propose an efficient method for the automatic detection of camera work changes using spatiotemporal images called X-ray images. We introduce various steps in the spatiotemporal image analysis process which significantly improves its robustness and decreases its computational complexity.</description><subject>Camera work</subject><subject>Image analysis</subject><subject>Segmentation</subject><subject>Spatiotemporal images</subject><subject>Video</subject><issn>0923-5965</issn><issn>1879-2677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw85iR6qSdqk7UWQZf2ABS96DmkyWaJtU5N2Zf-9qSsePQ0Mz_sy8yB0QckNJVTckprlGa8Fv6r5NSGEFxk7QAtalXXGRFkeosUfcoxOYnxPECtIvUB2Za3TDvoRq2n0nRqdxqpX7S66iL3FWnUQFP7y4SPtDe6cDj7CpkuRBPt-hrbOgMdTdP0Gx2Fej9ANPqgWu05tIJ6hI6vaCOe_8xS9Paxel0_Z-uXxeXm_znSe8zETtc5JI1gOjFNSWcuYKkpgWhe6oaYUBoBZLphpONWm4LopS0NYlVNTWdbkp-hy3zsE_zlBHGXnooa2VT34KUomaMEFrRNY7MH5mxjAyiGkU8NOUiJnqXI2JmdjsubyR6pkKXa3j0F6YusgyDjL02BcAD1K493_Bd_2sYB_</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Joly, Philippe</creator><creator>Kim, Hae-Kwang</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>1996</creationdate><title>Efficient automatic analysis of camera work and microsegmentation of video using spatiotemporal images</title><author>Joly, Philippe ; Kim, Hae-Kwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-69c30b623e25108ff22a47e2cc4cb1d76dee2f562db51cd45cb77d02831d8f2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Camera work</topic><topic>Image analysis</topic><topic>Segmentation</topic><topic>Spatiotemporal images</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joly, Philippe</creatorcontrib><creatorcontrib>Kim, Hae-Kwang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Signal processing. Image communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joly, Philippe</au><au>Kim, Hae-Kwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient automatic analysis of camera work and microsegmentation of video using spatiotemporal images</atitle><jtitle>Signal processing. Image communication</jtitle><date>1996</date><risdate>1996</risdate><volume>8</volume><issue>4</issue><spage>295</spage><epage>307</epage><pages>295-307</pages><issn>0923-5965</issn><eissn>1879-2677</eissn><abstract>The shot has been regarded as a fundamental unit for the application of digital manipulation to a video. Various techniques have been developed to detect automatically shot changes. But a sequence shot can be so long and complex that it has to be further decomposed into smaller units for more flexible and detailed manipulation. A sequence shot can be segmented into shot segments, each of which keeps a homogeneous camera motion. Camera work has important significance that reflect the intention of video producers. Camera work analysis and segmentation of a sequence shot into shot segments can help in choosing a representative image for a shot. Following concepts introduced by Tonomura et al. (1993), we propose an efficient method for the automatic detection of camera work changes using spatiotemporal images called X-ray images. We introduce various steps in the spatiotemporal image analysis process which significantly improves its robustness and decreases its computational complexity.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0923-5965(95)00054-2</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-5965 |
ispartof | Signal processing. Image communication, 1996, Vol.8 (4), p.295-307 |
issn | 0923-5965 1879-2677 |
language | eng |
recordid | cdi_proquest_miscellaneous_26145619 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Camera work Image analysis Segmentation Spatiotemporal images Video |
title | Efficient automatic analysis of camera work and microsegmentation of video using spatiotemporal images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20automatic%20analysis%20of%20camera%20work%20and%20microsegmentation%20of%20video%20using%20spatiotemporal%20images&rft.jtitle=Signal%20processing.%20Image%20communication&rft.au=Joly,%20Philippe&rft.date=1996&rft.volume=8&rft.issue=4&rft.spage=295&rft.epage=307&rft.pages=295-307&rft.issn=0923-5965&rft.eissn=1879-2677&rft_id=info:doi/10.1016/0923-5965(95)00054-2&rft_dat=%3Cproquest_cross%3E26145619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26145619&rft_id=info:pmid/&rft_els_id=0923596595000542&rfr_iscdi=true |