Efficient automatic analysis of camera work and microsegmentation of video using spatiotemporal images

The shot has been regarded as a fundamental unit for the application of digital manipulation to a video. Various techniques have been developed to detect automatically shot changes. But a sequence shot can be so long and complex that it has to be further decomposed into smaller units for more flexib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing. Image communication 1996, Vol.8 (4), p.295-307
Hauptverfasser: Joly, Philippe, Kim, Hae-Kwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 4
container_start_page 295
container_title Signal processing. Image communication
container_volume 8
creator Joly, Philippe
Kim, Hae-Kwang
description The shot has been regarded as a fundamental unit for the application of digital manipulation to a video. Various techniques have been developed to detect automatically shot changes. But a sequence shot can be so long and complex that it has to be further decomposed into smaller units for more flexible and detailed manipulation. A sequence shot can be segmented into shot segments, each of which keeps a homogeneous camera motion. Camera work has important significance that reflect the intention of video producers. Camera work analysis and segmentation of a sequence shot into shot segments can help in choosing a representative image for a shot. Following concepts introduced by Tonomura et al. (1993), we propose an efficient method for the automatic detection of camera work changes using spatiotemporal images called X-ray images. We introduce various steps in the spatiotemporal image analysis process which significantly improves its robustness and decreases its computational complexity.
doi_str_mv 10.1016/0923-5965(95)00054-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26145619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0923596595000542</els_id><sourcerecordid>26145619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-69c30b623e25108ff22a47e2cc4cb1d76dee2f562db51cd45cb77d02831d8f2b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw85iR6qSdqk7UWQZf2ABS96DmkyWaJtU5N2Zf-9qSsePQ0Mz_sy8yB0QckNJVTckprlGa8Fv6r5NSGEFxk7QAtalXXGRFkeosUfcoxOYnxPECtIvUB2Za3TDvoRq2n0nRqdxqpX7S66iL3FWnUQFP7y4SPtDe6cDj7CpkuRBPt-hrbOgMdTdP0Gx2Fej9ANPqgWu05tIJ6hI6vaCOe_8xS9Paxel0_Z-uXxeXm_znSe8zETtc5JI1gOjFNSWcuYKkpgWhe6oaYUBoBZLphpONWm4LopS0NYlVNTWdbkp-hy3zsE_zlBHGXnooa2VT34KUomaMEFrRNY7MH5mxjAyiGkU8NOUiJnqXI2JmdjsubyR6pkKXa3j0F6YusgyDjL02BcAD1K493_Bd_2sYB_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26145619</pqid></control><display><type>article</type><title>Efficient automatic analysis of camera work and microsegmentation of video using spatiotemporal images</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Joly, Philippe ; Kim, Hae-Kwang</creator><creatorcontrib>Joly, Philippe ; Kim, Hae-Kwang</creatorcontrib><description>The shot has been regarded as a fundamental unit for the application of digital manipulation to a video. Various techniques have been developed to detect automatically shot changes. But a sequence shot can be so long and complex that it has to be further decomposed into smaller units for more flexible and detailed manipulation. A sequence shot can be segmented into shot segments, each of which keeps a homogeneous camera motion. Camera work has important significance that reflect the intention of video producers. Camera work analysis and segmentation of a sequence shot into shot segments can help in choosing a representative image for a shot. Following concepts introduced by Tonomura et al. (1993), we propose an efficient method for the automatic detection of camera work changes using spatiotemporal images called X-ray images. We introduce various steps in the spatiotemporal image analysis process which significantly improves its robustness and decreases its computational complexity.</description><identifier>ISSN: 0923-5965</identifier><identifier>EISSN: 1879-2677</identifier><identifier>DOI: 10.1016/0923-5965(95)00054-2</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Camera work ; Image analysis ; Segmentation ; Spatiotemporal images ; Video</subject><ispartof>Signal processing. Image communication, 1996, Vol.8 (4), p.295-307</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-69c30b623e25108ff22a47e2cc4cb1d76dee2f562db51cd45cb77d02831d8f2b3</citedby><cites>FETCH-LOGICAL-c335t-69c30b623e25108ff22a47e2cc4cb1d76dee2f562db51cd45cb77d02831d8f2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0923-5965(95)00054-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Joly, Philippe</creatorcontrib><creatorcontrib>Kim, Hae-Kwang</creatorcontrib><title>Efficient automatic analysis of camera work and microsegmentation of video using spatiotemporal images</title><title>Signal processing. Image communication</title><description>The shot has been regarded as a fundamental unit for the application of digital manipulation to a video. Various techniques have been developed to detect automatically shot changes. But a sequence shot can be so long and complex that it has to be further decomposed into smaller units for more flexible and detailed manipulation. A sequence shot can be segmented into shot segments, each of which keeps a homogeneous camera motion. Camera work has important significance that reflect the intention of video producers. Camera work analysis and segmentation of a sequence shot into shot segments can help in choosing a representative image for a shot. Following concepts introduced by Tonomura et al. (1993), we propose an efficient method for the automatic detection of camera work changes using spatiotemporal images called X-ray images. We introduce various steps in the spatiotemporal image analysis process which significantly improves its robustness and decreases its computational complexity.</description><subject>Camera work</subject><subject>Image analysis</subject><subject>Segmentation</subject><subject>Spatiotemporal images</subject><subject>Video</subject><issn>0923-5965</issn><issn>1879-2677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw85iR6qSdqk7UWQZf2ABS96DmkyWaJtU5N2Zf-9qSsePQ0Mz_sy8yB0QckNJVTckprlGa8Fv6r5NSGEFxk7QAtalXXGRFkeosUfcoxOYnxPECtIvUB2Za3TDvoRq2n0nRqdxqpX7S66iL3FWnUQFP7y4SPtDe6cDj7CpkuRBPt-hrbOgMdTdP0Gx2Fej9ANPqgWu05tIJ6hI6vaCOe_8xS9Paxel0_Z-uXxeXm_znSe8zETtc5JI1gOjFNSWcuYKkpgWhe6oaYUBoBZLphpONWm4LopS0NYlVNTWdbkp-hy3zsE_zlBHGXnooa2VT34KUomaMEFrRNY7MH5mxjAyiGkU8NOUiJnqXI2JmdjsubyR6pkKXa3j0F6YusgyDjL02BcAD1K493_Bd_2sYB_</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Joly, Philippe</creator><creator>Kim, Hae-Kwang</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>1996</creationdate><title>Efficient automatic analysis of camera work and microsegmentation of video using spatiotemporal images</title><author>Joly, Philippe ; Kim, Hae-Kwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-69c30b623e25108ff22a47e2cc4cb1d76dee2f562db51cd45cb77d02831d8f2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Camera work</topic><topic>Image analysis</topic><topic>Segmentation</topic><topic>Spatiotemporal images</topic><topic>Video</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joly, Philippe</creatorcontrib><creatorcontrib>Kim, Hae-Kwang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Signal processing. Image communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joly, Philippe</au><au>Kim, Hae-Kwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient automatic analysis of camera work and microsegmentation of video using spatiotemporal images</atitle><jtitle>Signal processing. Image communication</jtitle><date>1996</date><risdate>1996</risdate><volume>8</volume><issue>4</issue><spage>295</spage><epage>307</epage><pages>295-307</pages><issn>0923-5965</issn><eissn>1879-2677</eissn><abstract>The shot has been regarded as a fundamental unit for the application of digital manipulation to a video. Various techniques have been developed to detect automatically shot changes. But a sequence shot can be so long and complex that it has to be further decomposed into smaller units for more flexible and detailed manipulation. A sequence shot can be segmented into shot segments, each of which keeps a homogeneous camera motion. Camera work has important significance that reflect the intention of video producers. Camera work analysis and segmentation of a sequence shot into shot segments can help in choosing a representative image for a shot. Following concepts introduced by Tonomura et al. (1993), we propose an efficient method for the automatic detection of camera work changes using spatiotemporal images called X-ray images. We introduce various steps in the spatiotemporal image analysis process which significantly improves its robustness and decreases its computational complexity.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0923-5965(95)00054-2</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0923-5965
ispartof Signal processing. Image communication, 1996, Vol.8 (4), p.295-307
issn 0923-5965
1879-2677
language eng
recordid cdi_proquest_miscellaneous_26145619
source Elsevier ScienceDirect Journals Complete
subjects Camera work
Image analysis
Segmentation
Spatiotemporal images
Video
title Efficient automatic analysis of camera work and microsegmentation of video using spatiotemporal images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20automatic%20analysis%20of%20camera%20work%20and%20microsegmentation%20of%20video%20using%20spatiotemporal%20images&rft.jtitle=Signal%20processing.%20Image%20communication&rft.au=Joly,%20Philippe&rft.date=1996&rft.volume=8&rft.issue=4&rft.spage=295&rft.epage=307&rft.pages=295-307&rft.issn=0923-5965&rft.eissn=1879-2677&rft_id=info:doi/10.1016/0923-5965(95)00054-2&rft_dat=%3Cproquest_cross%3E26145619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26145619&rft_id=info:pmid/&rft_els_id=0923596595000542&rfr_iscdi=true