Modeling and simulation of all-optical diffractive neural network based on nonlinear optical materials

In this Letter, we propose an all-optical diffractive deep neural network modeling method based on nonlinear optical materials. First, the nonlinear optical properties of graphene and zinc selenide (ZnSe) are analyzed. Then the optical limiting effect function corresponding to the saturation absorpt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2022-01, Vol.47 (1), p.126-129
Hauptverfasser: Sun, Yichen, Dong, Mingli, Yu, Mingxin, Lu, Lidan, Liang, Shengjun, Xia, Jiabin, Zhu, Lianqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue 1
container_start_page 126
container_title Optics letters
container_volume 47
creator Sun, Yichen
Dong, Mingli
Yu, Mingxin
Lu, Lidan
Liang, Shengjun
Xia, Jiabin
Zhu, Lianqing
description In this Letter, we propose an all-optical diffractive deep neural network modeling method based on nonlinear optical materials. First, the nonlinear optical properties of graphene and zinc selenide (ZnSe) are analyzed. Then the optical limiting effect function corresponding to the saturation absorption coefficient of the nonlinear optical materials is fitted. The optical limiting effect function is taken as the nonlinear activation function of the neural network. Finally, the all-optical diffractive neural network model based on nonlinear materials is established. The numerical simulation results show that the model can effectively improve the nonlinear representation ability of the all-optical diffractive neural network. It provides a theoretical support for the further realization of a photonic artificial intelligence chip based on nonlinear optical materials.
doi_str_mv 10.1364/OL.442970
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2614240159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621889517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-9342c945ec80829d55e359c63654264eab34d979a3cb1ccd1f2a492b97bd772e3</originalsourceid><addsrcrecordid>eNpdkEtLxDAUhYMoOj4W_gEJuNFFNc-2WcrgC0Zmo-uSJreSsU3GpFX890bGceHqwOU7h8uH0CklV5SX4nq5uBKCqYrsoBmVXBWiUmIXzQgVZaGkYgfoMKUVIaSsON9HB1woSWtVz1D3FCz0zr9i7S1Obph6Pbrgceiw7vsirEdndI-t67qozeg-AHuYYj55GD9DfMOtTmBxrvjg8xLoiLetQY8Qne7TMdrrcsDJbx6hl7vb5_lDsVjeP85vFoXhlI-F4oIZJSSYmtRMWSmBS2VKXkrBSgG65cKqSmluWmqMpR3TQrFWVa2tKgb8CF1sdtcxvE-QxmZwyUDfaw9hSg0rqWCCUKkyev4PXYUp-vxdphit66yoytTlhjIxpBSha9bRDTp-NZQ0P_Kb5aLZyM_s2e_i1A5g_8itbf4NQSx-_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621889517</pqid></control><display><type>article</type><title>Modeling and simulation of all-optical diffractive neural network based on nonlinear optical materials</title><source>Optica Publishing Group (OPG)</source><creator>Sun, Yichen ; Dong, Mingli ; Yu, Mingxin ; Lu, Lidan ; Liang, Shengjun ; Xia, Jiabin ; Zhu, Lianqing</creator><creatorcontrib>Sun, Yichen ; Dong, Mingli ; Yu, Mingxin ; Lu, Lidan ; Liang, Shengjun ; Xia, Jiabin ; Zhu, Lianqing</creatorcontrib><description>In this Letter, we propose an all-optical diffractive deep neural network modeling method based on nonlinear optical materials. First, the nonlinear optical properties of graphene and zinc selenide (ZnSe) are analyzed. Then the optical limiting effect function corresponding to the saturation absorption coefficient of the nonlinear optical materials is fitted. The optical limiting effect function is taken as the nonlinear activation function of the neural network. Finally, the all-optical diffractive neural network model based on nonlinear materials is established. The numerical simulation results show that the model can effectively improve the nonlinear representation ability of the all-optical diffractive neural network. It provides a theoretical support for the further realization of a photonic artificial intelligence chip based on nonlinear optical materials.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.442970</identifier><identifier>PMID: 34951898</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Absorptivity ; Artificial intelligence ; Artificial neural networks ; Computer simulation ; Constraining ; Graphene ; Mathematical models ; Microscopes ; Neural networks ; Nonlinear optics ; Optical materials ; Optical properties ; Optics</subject><ispartof>Optics letters, 2022-01, Vol.47 (1), p.126-129</ispartof><rights>Copyright Optical Society of America Jan 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-9342c945ec80829d55e359c63654264eab34d979a3cb1ccd1f2a492b97bd772e3</citedby><cites>FETCH-LOGICAL-c313t-9342c945ec80829d55e359c63654264eab34d979a3cb1ccd1f2a492b97bd772e3</cites><orcidid>0000-0001-9964-5180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34951898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yichen</creatorcontrib><creatorcontrib>Dong, Mingli</creatorcontrib><creatorcontrib>Yu, Mingxin</creatorcontrib><creatorcontrib>Lu, Lidan</creatorcontrib><creatorcontrib>Liang, Shengjun</creatorcontrib><creatorcontrib>Xia, Jiabin</creatorcontrib><creatorcontrib>Zhu, Lianqing</creatorcontrib><title>Modeling and simulation of all-optical diffractive neural network based on nonlinear optical materials</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>In this Letter, we propose an all-optical diffractive deep neural network modeling method based on nonlinear optical materials. First, the nonlinear optical properties of graphene and zinc selenide (ZnSe) are analyzed. Then the optical limiting effect function corresponding to the saturation absorption coefficient of the nonlinear optical materials is fitted. The optical limiting effect function is taken as the nonlinear activation function of the neural network. Finally, the all-optical diffractive neural network model based on nonlinear materials is established. The numerical simulation results show that the model can effectively improve the nonlinear representation ability of the all-optical diffractive neural network. It provides a theoretical support for the further realization of a photonic artificial intelligence chip based on nonlinear optical materials.</description><subject>Absorptivity</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer simulation</subject><subject>Constraining</subject><subject>Graphene</subject><subject>Mathematical models</subject><subject>Microscopes</subject><subject>Neural networks</subject><subject>Nonlinear optics</subject><subject>Optical materials</subject><subject>Optical properties</subject><subject>Optics</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLxDAUhYMoOj4W_gEJuNFFNc-2WcrgC0Zmo-uSJreSsU3GpFX890bGceHqwOU7h8uH0CklV5SX4nq5uBKCqYrsoBmVXBWiUmIXzQgVZaGkYgfoMKUVIaSsON9HB1woSWtVz1D3FCz0zr9i7S1Obph6Pbrgceiw7vsirEdndI-t67qozeg-AHuYYj55GD9DfMOtTmBxrvjg8xLoiLetQY8Qne7TMdrrcsDJbx6hl7vb5_lDsVjeP85vFoXhlI-F4oIZJSSYmtRMWSmBS2VKXkrBSgG65cKqSmluWmqMpR3TQrFWVa2tKgb8CF1sdtcxvE-QxmZwyUDfaw9hSg0rqWCCUKkyev4PXYUp-vxdphit66yoytTlhjIxpBSha9bRDTp-NZQ0P_Kb5aLZyM_s2e_i1A5g_8itbf4NQSx-_w</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Sun, Yichen</creator><creator>Dong, Mingli</creator><creator>Yu, Mingxin</creator><creator>Lu, Lidan</creator><creator>Liang, Shengjun</creator><creator>Xia, Jiabin</creator><creator>Zhu, Lianqing</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9964-5180</orcidid></search><sort><creationdate>20220101</creationdate><title>Modeling and simulation of all-optical diffractive neural network based on nonlinear optical materials</title><author>Sun, Yichen ; Dong, Mingli ; Yu, Mingxin ; Lu, Lidan ; Liang, Shengjun ; Xia, Jiabin ; Zhu, Lianqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-9342c945ec80829d55e359c63654264eab34d979a3cb1ccd1f2a492b97bd772e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorptivity</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer simulation</topic><topic>Constraining</topic><topic>Graphene</topic><topic>Mathematical models</topic><topic>Microscopes</topic><topic>Neural networks</topic><topic>Nonlinear optics</topic><topic>Optical materials</topic><topic>Optical properties</topic><topic>Optics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yichen</creatorcontrib><creatorcontrib>Dong, Mingli</creatorcontrib><creatorcontrib>Yu, Mingxin</creatorcontrib><creatorcontrib>Lu, Lidan</creatorcontrib><creatorcontrib>Liang, Shengjun</creatorcontrib><creatorcontrib>Xia, Jiabin</creatorcontrib><creatorcontrib>Zhu, Lianqing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yichen</au><au>Dong, Mingli</au><au>Yu, Mingxin</au><au>Lu, Lidan</au><au>Liang, Shengjun</au><au>Xia, Jiabin</au><au>Zhu, Lianqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and simulation of all-optical diffractive neural network based on nonlinear optical materials</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>47</volume><issue>1</issue><spage>126</spage><epage>129</epage><pages>126-129</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>In this Letter, we propose an all-optical diffractive deep neural network modeling method based on nonlinear optical materials. First, the nonlinear optical properties of graphene and zinc selenide (ZnSe) are analyzed. Then the optical limiting effect function corresponding to the saturation absorption coefficient of the nonlinear optical materials is fitted. The optical limiting effect function is taken as the nonlinear activation function of the neural network. Finally, the all-optical diffractive neural network model based on nonlinear materials is established. The numerical simulation results show that the model can effectively improve the nonlinear representation ability of the all-optical diffractive neural network. It provides a theoretical support for the further realization of a photonic artificial intelligence chip based on nonlinear optical materials.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>34951898</pmid><doi>10.1364/OL.442970</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9964-5180</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2022-01, Vol.47 (1), p.126-129
issn 0146-9592
1539-4794
language eng
recordid cdi_proquest_miscellaneous_2614240159
source Optica Publishing Group (OPG)
subjects Absorptivity
Artificial intelligence
Artificial neural networks
Computer simulation
Constraining
Graphene
Mathematical models
Microscopes
Neural networks
Nonlinear optics
Optical materials
Optical properties
Optics
title Modeling and simulation of all-optical diffractive neural network based on nonlinear optical materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20simulation%20of%20all-optical%20diffractive%20neural%20network%20based%20on%20nonlinear%20optical%20materials&rft.jtitle=Optics%20letters&rft.au=Sun,%20Yichen&rft.date=2022-01-01&rft.volume=47&rft.issue=1&rft.spage=126&rft.epage=129&rft.pages=126-129&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.442970&rft_dat=%3Cproquest_cross%3E2621889517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621889517&rft_id=info:pmid/34951898&rfr_iscdi=true