Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions
The competition between kinetic energy and Coulomb interactions in electronic systems leads to complex many-body ground states with competing orders. Here we present zinc oxide-based two-dimensional electron systems as a high-mobility system to study the low-temperature phases of strongly interactin...
Gespeichert in:
Veröffentlicht in: | Nature materials 2022-03, Vol.21 (3), p.311-316 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 316 |
---|---|
container_issue | 3 |
container_start_page | 311 |
container_title | Nature materials |
container_volume | 21 |
creator | Falson, J. Sodemann, I. Skinner, B. Tabrea, D. Kozuka, Y. Tsukazaki, A. Kawasaki, M. von Klitzing, K. Smet, J. H. |
description | The competition between kinetic energy and Coulomb interactions in electronic systems leads to complex many-body ground states with competing orders. Here we present zinc oxide-based two-dimensional electron systems as a high-mobility system to study the low-temperature phases of strongly interacting electrons. An analysis of the electronic transport provides evidence for competing correlated metallic and insulating states with varying degrees of spin polarization. Some features bear quantitative resemblance to quantum Monte Carlo simulation results, including the transition point from the paramagnetic Fermi liquid to Wigner crystal and the absence of a Stoner transition. At very low temperatures, we resolve a non-monotonic spin polarizability of electrons across the phase transition, pointing towards a low spin phase of electrons, and a two-order-of-magnitude positive magnetoresistance that is challenging to understand within traditional metallic transport paradigms. This work establishes zinc oxide as a platform for studying strongly correlated electrons in two dimensions.
Zinc oxide-based two-dimensional electron systems are demonstrated to be high-mobility systems that enable the study of low-temperature phases of strongly interacting electrons. |
doi_str_mv | 10.1038/s41563-021-01166-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2614240066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614240066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-882e56fa4567adf043a961f073f2c45f91d80b5f091dfb1044a33e6598d887df3</originalsourceid><addsrcrecordid>eNp9kM1O5DAQhC3Eir_lBTggH7kE3LHjJEc0gl0kJC6gPVqeuD14lNiD7WgFT79mZpYjpy51fV1SFyEXwK6B8e4mCWgkr1gNFQOQsoIDcgKilZWQkh3uNUBdH5PTlNaskE0jj8gxF73oO-AnJC7CtMHs_IoOIUYcdUZDUy4jUR3D7A3Nr0g_MIbKOhwN_eNWHiMd4nvBxtF96OyCpzlqn9xWBktxxCHH4BN1xfobqHETFr9sfpIfVo8Jz_fzjLzc3z0vflePT78eFreP1cBFm6uuq7GRVotGttpYJrjuJVjWclsPorE9mI4tG8uKsEtgQmjOUTZ9Z7quNZafkatd7iaGtxlTVpNLA46j9hjmpGoJohaMSVnQeocOMaQU0apNdJOO7wqY-uxa7bpWpUG17VpBObrc58_LCc3Xyf9yC8B3QCqWX2FU6zBHX37-LvYfiGOMNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614240066</pqid></control><display><type>article</type><title>Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Falson, J. ; Sodemann, I. ; Skinner, B. ; Tabrea, D. ; Kozuka, Y. ; Tsukazaki, A. ; Kawasaki, M. ; von Klitzing, K. ; Smet, J. H.</creator><creatorcontrib>Falson, J. ; Sodemann, I. ; Skinner, B. ; Tabrea, D. ; Kozuka, Y. ; Tsukazaki, A. ; Kawasaki, M. ; von Klitzing, K. ; Smet, J. H.</creatorcontrib><description>The competition between kinetic energy and Coulomb interactions in electronic systems leads to complex many-body ground states with competing orders. Here we present zinc oxide-based two-dimensional electron systems as a high-mobility system to study the low-temperature phases of strongly interacting electrons. An analysis of the electronic transport provides evidence for competing correlated metallic and insulating states with varying degrees of spin polarization. Some features bear quantitative resemblance to quantum Monte Carlo simulation results, including the transition point from the paramagnetic Fermi liquid to Wigner crystal and the absence of a Stoner transition. At very low temperatures, we resolve a non-monotonic spin polarizability of electrons across the phase transition, pointing towards a low spin phase of electrons, and a two-order-of-magnitude positive magnetoresistance that is challenging to understand within traditional metallic transport paradigms. This work establishes zinc oxide as a platform for studying strongly correlated electrons in two dimensions.
Zinc oxide-based two-dimensional electron systems are demonstrated to be high-mobility systems that enable the study of low-temperature phases of strongly interacting electrons.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-021-01166-1</identifier><identifier>PMID: 34949813</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/2795 ; 639/301/119/544 ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Materials Science ; Nanotechnology ; Optical and Electronic Materials</subject><ispartof>Nature materials, 2022-03, Vol.21 (3), p.311-316</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-882e56fa4567adf043a961f073f2c45f91d80b5f091dfb1044a33e6598d887df3</citedby><cites>FETCH-LOGICAL-c347t-882e56fa4567adf043a961f073f2c45f91d80b5f091dfb1044a33e6598d887df3</cites><orcidid>0000-0003-0251-063X ; 0000-0003-3183-9864 ; 0000-0002-4719-8873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-021-01166-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-021-01166-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34949813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falson, J.</creatorcontrib><creatorcontrib>Sodemann, I.</creatorcontrib><creatorcontrib>Skinner, B.</creatorcontrib><creatorcontrib>Tabrea, D.</creatorcontrib><creatorcontrib>Kozuka, Y.</creatorcontrib><creatorcontrib>Tsukazaki, A.</creatorcontrib><creatorcontrib>Kawasaki, M.</creatorcontrib><creatorcontrib>von Klitzing, K.</creatorcontrib><creatorcontrib>Smet, J. H.</creatorcontrib><title>Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>The competition between kinetic energy and Coulomb interactions in electronic systems leads to complex many-body ground states with competing orders. Here we present zinc oxide-based two-dimensional electron systems as a high-mobility system to study the low-temperature phases of strongly interacting electrons. An analysis of the electronic transport provides evidence for competing correlated metallic and insulating states with varying degrees of spin polarization. Some features bear quantitative resemblance to quantum Monte Carlo simulation results, including the transition point from the paramagnetic Fermi liquid to Wigner crystal and the absence of a Stoner transition. At very low temperatures, we resolve a non-monotonic spin polarizability of electrons across the phase transition, pointing towards a low spin phase of electrons, and a two-order-of-magnitude positive magnetoresistance that is challenging to understand within traditional metallic transport paradigms. This work establishes zinc oxide as a platform for studying strongly correlated electrons in two dimensions.
Zinc oxide-based two-dimensional electron systems are demonstrated to be high-mobility systems that enable the study of low-temperature phases of strongly interacting electrons.</description><subject>639/301/119/2795</subject><subject>639/301/119/544</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1O5DAQhC3Eir_lBTggH7kE3LHjJEc0gl0kJC6gPVqeuD14lNiD7WgFT79mZpYjpy51fV1SFyEXwK6B8e4mCWgkr1gNFQOQsoIDcgKilZWQkh3uNUBdH5PTlNaskE0jj8gxF73oO-AnJC7CtMHs_IoOIUYcdUZDUy4jUR3D7A3Nr0g_MIbKOhwN_eNWHiMd4nvBxtF96OyCpzlqn9xWBktxxCHH4BN1xfobqHETFr9sfpIfVo8Jz_fzjLzc3z0vflePT78eFreP1cBFm6uuq7GRVotGttpYJrjuJVjWclsPorE9mI4tG8uKsEtgQmjOUTZ9Z7quNZafkatd7iaGtxlTVpNLA46j9hjmpGoJohaMSVnQeocOMaQU0apNdJOO7wqY-uxa7bpWpUG17VpBObrc58_LCc3Xyf9yC8B3QCqWX2FU6zBHX37-LvYfiGOMNQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Falson, J.</creator><creator>Sodemann, I.</creator><creator>Skinner, B.</creator><creator>Tabrea, D.</creator><creator>Kozuka, Y.</creator><creator>Tsukazaki, A.</creator><creator>Kawasaki, M.</creator><creator>von Klitzing, K.</creator><creator>Smet, J. H.</creator><general>Nature Publishing Group UK</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0251-063X</orcidid><orcidid>https://orcid.org/0000-0003-3183-9864</orcidid><orcidid>https://orcid.org/0000-0002-4719-8873</orcidid></search><sort><creationdate>20220301</creationdate><title>Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions</title><author>Falson, J. ; Sodemann, I. ; Skinner, B. ; Tabrea, D. ; Kozuka, Y. ; Tsukazaki, A. ; Kawasaki, M. ; von Klitzing, K. ; Smet, J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-882e56fa4567adf043a961f073f2c45f91d80b5f091dfb1044a33e6598d887df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/301/119/2795</topic><topic>639/301/119/544</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falson, J.</creatorcontrib><creatorcontrib>Sodemann, I.</creatorcontrib><creatorcontrib>Skinner, B.</creatorcontrib><creatorcontrib>Tabrea, D.</creatorcontrib><creatorcontrib>Kozuka, Y.</creatorcontrib><creatorcontrib>Tsukazaki, A.</creatorcontrib><creatorcontrib>Kawasaki, M.</creatorcontrib><creatorcontrib>von Klitzing, K.</creatorcontrib><creatorcontrib>Smet, J. H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falson, J.</au><au>Sodemann, I.</au><au>Skinner, B.</au><au>Tabrea, D.</au><au>Kozuka, Y.</au><au>Tsukazaki, A.</au><au>Kawasaki, M.</au><au>von Klitzing, K.</au><au>Smet, J. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>21</volume><issue>3</issue><spage>311</spage><epage>316</epage><pages>311-316</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The competition between kinetic energy and Coulomb interactions in electronic systems leads to complex many-body ground states with competing orders. Here we present zinc oxide-based two-dimensional electron systems as a high-mobility system to study the low-temperature phases of strongly interacting electrons. An analysis of the electronic transport provides evidence for competing correlated metallic and insulating states with varying degrees of spin polarization. Some features bear quantitative resemblance to quantum Monte Carlo simulation results, including the transition point from the paramagnetic Fermi liquid to Wigner crystal and the absence of a Stoner transition. At very low temperatures, we resolve a non-monotonic spin polarizability of electrons across the phase transition, pointing towards a low spin phase of electrons, and a two-order-of-magnitude positive magnetoresistance that is challenging to understand within traditional metallic transport paradigms. This work establishes zinc oxide as a platform for studying strongly correlated electrons in two dimensions.
Zinc oxide-based two-dimensional electron systems are demonstrated to be high-mobility systems that enable the study of low-temperature phases of strongly interacting electrons.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34949813</pmid><doi>10.1038/s41563-021-01166-1</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0251-063X</orcidid><orcidid>https://orcid.org/0000-0003-3183-9864</orcidid><orcidid>https://orcid.org/0000-0002-4719-8873</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2022-03, Vol.21 (3), p.311-316 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_2614240066 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/301/119/2795 639/301/119/544 Biomaterials Chemistry and Materials Science Condensed Matter Physics Materials Science Nanotechnology Optical and Electronic Materials |
title | Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competing%20correlated%20states%20around%20the%20zero-field%20Wigner%20crystallization%20transition%20of%20electrons%20in%20two%20dimensions&rft.jtitle=Nature%20materials&rft.au=Falson,%20J.&rft.date=2022-03-01&rft.volume=21&rft.issue=3&rft.spage=311&rft.epage=316&rft.pages=311-316&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-021-01166-1&rft_dat=%3Cproquest_cross%3E2614240066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614240066&rft_id=info:pmid/34949813&rfr_iscdi=true |