Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions

The competition between kinetic energy and Coulomb interactions in electronic systems leads to complex many-body ground states with competing orders. Here we present zinc oxide-based two-dimensional electron systems as a high-mobility system to study the low-temperature phases of strongly interactin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2022-03, Vol.21 (3), p.311-316
Hauptverfasser: Falson, J., Sodemann, I., Skinner, B., Tabrea, D., Kozuka, Y., Tsukazaki, A., Kawasaki, M., von Klitzing, K., Smet, J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue 3
container_start_page 311
container_title Nature materials
container_volume 21
creator Falson, J.
Sodemann, I.
Skinner, B.
Tabrea, D.
Kozuka, Y.
Tsukazaki, A.
Kawasaki, M.
von Klitzing, K.
Smet, J. H.
description The competition between kinetic energy and Coulomb interactions in electronic systems leads to complex many-body ground states with competing orders. Here we present zinc oxide-based two-dimensional electron systems as a high-mobility system to study the low-temperature phases of strongly interacting electrons. An analysis of the electronic transport provides evidence for competing correlated metallic and insulating states with varying degrees of spin polarization. Some features bear quantitative resemblance to quantum Monte Carlo simulation results, including the transition point from the paramagnetic Fermi liquid to Wigner crystal and the absence of a Stoner transition. At very low temperatures, we resolve a non-monotonic spin polarizability of electrons across the phase transition, pointing towards a low spin phase of electrons, and a two-order-of-magnitude positive magnetoresistance that is challenging to understand within traditional metallic transport paradigms. This work establishes zinc oxide as a platform for studying strongly correlated electrons in two dimensions. Zinc oxide-based two-dimensional electron systems are demonstrated to be high-mobility systems that enable the study of low-temperature phases of strongly interacting electrons.
doi_str_mv 10.1038/s41563-021-01166-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2614240066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614240066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-882e56fa4567adf043a961f073f2c45f91d80b5f091dfb1044a33e6598d887df3</originalsourceid><addsrcrecordid>eNp9kM1O5DAQhC3Eir_lBTggH7kE3LHjJEc0gl0kJC6gPVqeuD14lNiD7WgFT79mZpYjpy51fV1SFyEXwK6B8e4mCWgkr1gNFQOQsoIDcgKilZWQkh3uNUBdH5PTlNaskE0jj8gxF73oO-AnJC7CtMHs_IoOIUYcdUZDUy4jUR3D7A3Nr0g_MIbKOhwN_eNWHiMd4nvBxtF96OyCpzlqn9xWBktxxCHH4BN1xfobqHETFr9sfpIfVo8Jz_fzjLzc3z0vflePT78eFreP1cBFm6uuq7GRVotGttpYJrjuJVjWclsPorE9mI4tG8uKsEtgQmjOUTZ9Z7quNZafkatd7iaGtxlTVpNLA46j9hjmpGoJohaMSVnQeocOMaQU0apNdJOO7wqY-uxa7bpWpUG17VpBObrc58_LCc3Xyf9yC8B3QCqWX2FU6zBHX37-LvYfiGOMNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614240066</pqid></control><display><type>article</type><title>Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Falson, J. ; Sodemann, I. ; Skinner, B. ; Tabrea, D. ; Kozuka, Y. ; Tsukazaki, A. ; Kawasaki, M. ; von Klitzing, K. ; Smet, J. H.</creator><creatorcontrib>Falson, J. ; Sodemann, I. ; Skinner, B. ; Tabrea, D. ; Kozuka, Y. ; Tsukazaki, A. ; Kawasaki, M. ; von Klitzing, K. ; Smet, J. H.</creatorcontrib><description>The competition between kinetic energy and Coulomb interactions in electronic systems leads to complex many-body ground states with competing orders. Here we present zinc oxide-based two-dimensional electron systems as a high-mobility system to study the low-temperature phases of strongly interacting electrons. An analysis of the electronic transport provides evidence for competing correlated metallic and insulating states with varying degrees of spin polarization. Some features bear quantitative resemblance to quantum Monte Carlo simulation results, including the transition point from the paramagnetic Fermi liquid to Wigner crystal and the absence of a Stoner transition. At very low temperatures, we resolve a non-monotonic spin polarizability of electrons across the phase transition, pointing towards a low spin phase of electrons, and a two-order-of-magnitude positive magnetoresistance that is challenging to understand within traditional metallic transport paradigms. This work establishes zinc oxide as a platform for studying strongly correlated electrons in two dimensions. Zinc oxide-based two-dimensional electron systems are demonstrated to be high-mobility systems that enable the study of low-temperature phases of strongly interacting electrons.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-021-01166-1</identifier><identifier>PMID: 34949813</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/2795 ; 639/301/119/544 ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Materials Science ; Nanotechnology ; Optical and Electronic Materials</subject><ispartof>Nature materials, 2022-03, Vol.21 (3), p.311-316</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-882e56fa4567adf043a961f073f2c45f91d80b5f091dfb1044a33e6598d887df3</citedby><cites>FETCH-LOGICAL-c347t-882e56fa4567adf043a961f073f2c45f91d80b5f091dfb1044a33e6598d887df3</cites><orcidid>0000-0003-0251-063X ; 0000-0003-3183-9864 ; 0000-0002-4719-8873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-021-01166-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-021-01166-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34949813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falson, J.</creatorcontrib><creatorcontrib>Sodemann, I.</creatorcontrib><creatorcontrib>Skinner, B.</creatorcontrib><creatorcontrib>Tabrea, D.</creatorcontrib><creatorcontrib>Kozuka, Y.</creatorcontrib><creatorcontrib>Tsukazaki, A.</creatorcontrib><creatorcontrib>Kawasaki, M.</creatorcontrib><creatorcontrib>von Klitzing, K.</creatorcontrib><creatorcontrib>Smet, J. H.</creatorcontrib><title>Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>The competition between kinetic energy and Coulomb interactions in electronic systems leads to complex many-body ground states with competing orders. Here we present zinc oxide-based two-dimensional electron systems as a high-mobility system to study the low-temperature phases of strongly interacting electrons. An analysis of the electronic transport provides evidence for competing correlated metallic and insulating states with varying degrees of spin polarization. Some features bear quantitative resemblance to quantum Monte Carlo simulation results, including the transition point from the paramagnetic Fermi liquid to Wigner crystal and the absence of a Stoner transition. At very low temperatures, we resolve a non-monotonic spin polarizability of electrons across the phase transition, pointing towards a low spin phase of electrons, and a two-order-of-magnitude positive magnetoresistance that is challenging to understand within traditional metallic transport paradigms. This work establishes zinc oxide as a platform for studying strongly correlated electrons in two dimensions. Zinc oxide-based two-dimensional electron systems are demonstrated to be high-mobility systems that enable the study of low-temperature phases of strongly interacting electrons.</description><subject>639/301/119/2795</subject><subject>639/301/119/544</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1O5DAQhC3Eir_lBTggH7kE3LHjJEc0gl0kJC6gPVqeuD14lNiD7WgFT79mZpYjpy51fV1SFyEXwK6B8e4mCWgkr1gNFQOQsoIDcgKilZWQkh3uNUBdH5PTlNaskE0jj8gxF73oO-AnJC7CtMHs_IoOIUYcdUZDUy4jUR3D7A3Nr0g_MIbKOhwN_eNWHiMd4nvBxtF96OyCpzlqn9xWBktxxCHH4BN1xfobqHETFr9sfpIfVo8Jz_fzjLzc3z0vflePT78eFreP1cBFm6uuq7GRVotGttpYJrjuJVjWclsPorE9mI4tG8uKsEtgQmjOUTZ9Z7quNZafkatd7iaGtxlTVpNLA46j9hjmpGoJohaMSVnQeocOMaQU0apNdJOO7wqY-uxa7bpWpUG17VpBObrc58_LCc3Xyf9yC8B3QCqWX2FU6zBHX37-LvYfiGOMNQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Falson, J.</creator><creator>Sodemann, I.</creator><creator>Skinner, B.</creator><creator>Tabrea, D.</creator><creator>Kozuka, Y.</creator><creator>Tsukazaki, A.</creator><creator>Kawasaki, M.</creator><creator>von Klitzing, K.</creator><creator>Smet, J. H.</creator><general>Nature Publishing Group UK</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0251-063X</orcidid><orcidid>https://orcid.org/0000-0003-3183-9864</orcidid><orcidid>https://orcid.org/0000-0002-4719-8873</orcidid></search><sort><creationdate>20220301</creationdate><title>Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions</title><author>Falson, J. ; Sodemann, I. ; Skinner, B. ; Tabrea, D. ; Kozuka, Y. ; Tsukazaki, A. ; Kawasaki, M. ; von Klitzing, K. ; Smet, J. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-882e56fa4567adf043a961f073f2c45f91d80b5f091dfb1044a33e6598d887df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/301/119/2795</topic><topic>639/301/119/544</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falson, J.</creatorcontrib><creatorcontrib>Sodemann, I.</creatorcontrib><creatorcontrib>Skinner, B.</creatorcontrib><creatorcontrib>Tabrea, D.</creatorcontrib><creatorcontrib>Kozuka, Y.</creatorcontrib><creatorcontrib>Tsukazaki, A.</creatorcontrib><creatorcontrib>Kawasaki, M.</creatorcontrib><creatorcontrib>von Klitzing, K.</creatorcontrib><creatorcontrib>Smet, J. H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falson, J.</au><au>Sodemann, I.</au><au>Skinner, B.</au><au>Tabrea, D.</au><au>Kozuka, Y.</au><au>Tsukazaki, A.</au><au>Kawasaki, M.</au><au>von Klitzing, K.</au><au>Smet, J. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>21</volume><issue>3</issue><spage>311</spage><epage>316</epage><pages>311-316</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The competition between kinetic energy and Coulomb interactions in electronic systems leads to complex many-body ground states with competing orders. Here we present zinc oxide-based two-dimensional electron systems as a high-mobility system to study the low-temperature phases of strongly interacting electrons. An analysis of the electronic transport provides evidence for competing correlated metallic and insulating states with varying degrees of spin polarization. Some features bear quantitative resemblance to quantum Monte Carlo simulation results, including the transition point from the paramagnetic Fermi liquid to Wigner crystal and the absence of a Stoner transition. At very low temperatures, we resolve a non-monotonic spin polarizability of electrons across the phase transition, pointing towards a low spin phase of electrons, and a two-order-of-magnitude positive magnetoresistance that is challenging to understand within traditional metallic transport paradigms. This work establishes zinc oxide as a platform for studying strongly correlated electrons in two dimensions. Zinc oxide-based two-dimensional electron systems are demonstrated to be high-mobility systems that enable the study of low-temperature phases of strongly interacting electrons.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34949813</pmid><doi>10.1038/s41563-021-01166-1</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0251-063X</orcidid><orcidid>https://orcid.org/0000-0003-3183-9864</orcidid><orcidid>https://orcid.org/0000-0002-4719-8873</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2022-03, Vol.21 (3), p.311-316
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_2614240066
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/301/119/2795
639/301/119/544
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Materials Science
Nanotechnology
Optical and Electronic Materials
title Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competing%20correlated%20states%20around%20the%20zero-field%20Wigner%20crystallization%20transition%20of%20electrons%20in%20two%20dimensions&rft.jtitle=Nature%20materials&rft.au=Falson,%20J.&rft.date=2022-03-01&rft.volume=21&rft.issue=3&rft.spage=311&rft.epage=316&rft.pages=311-316&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-021-01166-1&rft_dat=%3Cproquest_cross%3E2614240066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614240066&rft_id=info:pmid/34949813&rfr_iscdi=true