Study of the Subjective and Objective Quality of High Motion Live Streaming Videos

Video livestreaming is gaining prevalence among video streaming service s, especially for the delivery of live, high motion content such as sport ing events. The quality of the se livestreaming videos can be adversely affected by any of a wide variety of events, including capture artifacts, and dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2022, Vol.31, p.1027-1041
Hauptverfasser: Shang, Zaixi, Ebenezer, Joshua Peter, Wu, Yongjun, Wei, Hai, Sethuraman, Sriram, Bovik, Alan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1041
container_issue
container_start_page 1027
container_title IEEE transactions on image processing
container_volume 31
creator Shang, Zaixi
Ebenezer, Joshua Peter
Wu, Yongjun
Wei, Hai
Sethuraman, Sriram
Bovik, Alan C.
description Video livestreaming is gaining prevalence among video streaming service s, especially for the delivery of live, high motion content such as sport ing events. The quality of the se livestreaming videos can be adversely affected by any of a wide variety of events, including capture artifacts, and distortions incurred during coding and transmission. High motion content can cause or exacerbate many kinds of distortion, such as motion blur and stutter. Because of this, the development of objective Video Quality Assessment (VQA) algorithms that can predict the perceptual quality of high motion, live streamed videos is greatly desired. Important resources for developing these algorithms are appropriate databases that exemplify the kinds of live streaming video distortions encountered in practice. Towards making progress in this direction, we built a video quality database specifically designed for live streaming VQA research. The new video database is called the Laboratory for Image and Video Engineering (LIVE) Livestream Database. The LIVE Livestream Database includes 315 videos of 45 source sequences from 33 original contents impaired by 6 types of distortions. We also performed a subjective quality study using the new database, whereby more than 12,000 human opinions were gathered from 40 subjects. We demonstrate the usefulness of the new resource by performing a holistic evaluation of the performance of current state-of-the-art (SOTA) VQA models. We envision that researchers will find the dataset to be useful for the development, testing, and comparison of future VQA models. The LIVE Livestream database is being made publicly available for these purposes at https://live.ece . utexas.edu/research/LIVE_APV_Study/apv_index.html
doi_str_mv 10.1109/TIP.2021.3136723
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2614239969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9662669</ieee_id><sourcerecordid>2619018207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-ebef41dfd8a26d1ef18b33183d72356ebd46dd6f0f5cbe27ee2147d023a889b23</originalsourceid><addsrcrecordid>eNpdkFFLwzAQgIMoTqfvgiAFX3zpzCVpmjzKUDeYTN30tbTNdcvY2tm0wv69mZt78OnuuO-Ou4-QK6A9AKrvp8PXHqMMehy4jBk_ImegBYSUCnbscxrFYQxCd8i5cwtKQUQgT0mHCx2BEuqMvE-a1myCqgiaOQaTNltg3thvDNLSBOND9damS9v8cgM7mwcvVWOrMhhte5OmxnRly1nwaQ1W7oKcFOnS4eU-dsnH0-O0PwhH4-dh_2EU5lzpJsQMCwGmMCpl0gAWoDLOQXHjH4kkZkZIY2RBiyjPkMWIDERsKOOpUjpjvEvudnvXdfXVomuSlXU5LpdpiVXrEiZBMK611B69_YcuqrYu_XVbSlNQjMaeojsqryvnaiySdW1Xab1JgCZb34n3nWx9J3vffuRmv7jNVmgOA3-CPXC9AywiHtpaSib9XT-aw4L8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619018207</pqid></control><display><type>article</type><title>Study of the Subjective and Objective Quality of High Motion Live Streaming Videos</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Shang, Zaixi ; Ebenezer, Joshua Peter ; Wu, Yongjun ; Wei, Hai ; Sethuraman, Sriram ; Bovik, Alan C.</creator><creatorcontrib>Shang, Zaixi ; Ebenezer, Joshua Peter ; Wu, Yongjun ; Wei, Hai ; Sethuraman, Sriram ; Bovik, Alan C.</creatorcontrib><description>Video livestreaming is gaining prevalence among video streaming service s, especially for the delivery of live, high motion content such as sport ing events. The quality of the se livestreaming videos can be adversely affected by any of a wide variety of events, including capture artifacts, and distortions incurred during coding and transmission. High motion content can cause or exacerbate many kinds of distortion, such as motion blur and stutter. Because of this, the development of objective Video Quality Assessment (VQA) algorithms that can predict the perceptual quality of high motion, live streamed videos is greatly desired. Important resources for developing these algorithms are appropriate databases that exemplify the kinds of live streaming video distortions encountered in practice. Towards making progress in this direction, we built a video quality database specifically designed for live streaming VQA research. The new video database is called the Laboratory for Image and Video Engineering (LIVE) Livestream Database. The LIVE Livestream Database includes 315 videos of 45 source sequences from 33 original contents impaired by 6 types of distortions. We also performed a subjective quality study using the new database, whereby more than 12,000 human opinions were gathered from 40 subjects. We demonstrate the usefulness of the new resource by performing a holistic evaluation of the performance of current state-of-the-art (SOTA) VQA models. We envision that researchers will find the dataset to be useful for the development, testing, and comparison of future VQA models. The LIVE Livestream database is being made publicly available for these purposes at https://live.ece . utexas.edu/research/LIVE_APV_Study/apv_index.html</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2021.3136723</identifier><identifier>PMID: 34951848</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Blurring ; Databases, Factual ; Distortion ; Humans ; Image coding ; Live Streaming ; Motion ; objective VQA algorithm evaluation ; Quality assessment ; Sports ; Streaming media ; video quality assessment ; video quality database ; Video transmission ; Videos</subject><ispartof>IEEE transactions on image processing, 2022, Vol.31, p.1027-1041</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-ebef41dfd8a26d1ef18b33183d72356ebd46dd6f0f5cbe27ee2147d023a889b23</citedby><cites>FETCH-LOGICAL-c389t-ebef41dfd8a26d1ef18b33183d72356ebd46dd6f0f5cbe27ee2147d023a889b23</cites><orcidid>0000-0001-6067-710X ; 0000-0002-4264-3130 ; 0000-0003-4936-9784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9662669$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34951848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shang, Zaixi</creatorcontrib><creatorcontrib>Ebenezer, Joshua Peter</creatorcontrib><creatorcontrib>Wu, Yongjun</creatorcontrib><creatorcontrib>Wei, Hai</creatorcontrib><creatorcontrib>Sethuraman, Sriram</creatorcontrib><creatorcontrib>Bovik, Alan C.</creatorcontrib><title>Study of the Subjective and Objective Quality of High Motion Live Streaming Videos</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Video livestreaming is gaining prevalence among video streaming service s, especially for the delivery of live, high motion content such as sport ing events. The quality of the se livestreaming videos can be adversely affected by any of a wide variety of events, including capture artifacts, and distortions incurred during coding and transmission. High motion content can cause or exacerbate many kinds of distortion, such as motion blur and stutter. Because of this, the development of objective Video Quality Assessment (VQA) algorithms that can predict the perceptual quality of high motion, live streamed videos is greatly desired. Important resources for developing these algorithms are appropriate databases that exemplify the kinds of live streaming video distortions encountered in practice. Towards making progress in this direction, we built a video quality database specifically designed for live streaming VQA research. The new video database is called the Laboratory for Image and Video Engineering (LIVE) Livestream Database. The LIVE Livestream Database includes 315 videos of 45 source sequences from 33 original contents impaired by 6 types of distortions. We also performed a subjective quality study using the new database, whereby more than 12,000 human opinions were gathered from 40 subjects. We demonstrate the usefulness of the new resource by performing a holistic evaluation of the performance of current state-of-the-art (SOTA) VQA models. We envision that researchers will find the dataset to be useful for the development, testing, and comparison of future VQA models. The LIVE Livestream database is being made publicly available for these purposes at https://live.ece . utexas.edu/research/LIVE_APV_Study/apv_index.html</description><subject>Algorithms</subject><subject>Blurring</subject><subject>Databases, Factual</subject><subject>Distortion</subject><subject>Humans</subject><subject>Image coding</subject><subject>Live Streaming</subject><subject>Motion</subject><subject>objective VQA algorithm evaluation</subject><subject>Quality assessment</subject><subject>Sports</subject><subject>Streaming media</subject><subject>video quality assessment</subject><subject>video quality database</subject><subject>Video transmission</subject><subject>Videos</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkFFLwzAQgIMoTqfvgiAFX3zpzCVpmjzKUDeYTN30tbTNdcvY2tm0wv69mZt78OnuuO-Ou4-QK6A9AKrvp8PXHqMMehy4jBk_ImegBYSUCnbscxrFYQxCd8i5cwtKQUQgT0mHCx2BEuqMvE-a1myCqgiaOQaTNltg3thvDNLSBOND9damS9v8cgM7mwcvVWOrMhhte5OmxnRly1nwaQ1W7oKcFOnS4eU-dsnH0-O0PwhH4-dh_2EU5lzpJsQMCwGmMCpl0gAWoDLOQXHjH4kkZkZIY2RBiyjPkMWIDERsKOOpUjpjvEvudnvXdfXVomuSlXU5LpdpiVXrEiZBMK611B69_YcuqrYu_XVbSlNQjMaeojsqryvnaiySdW1Xab1JgCZb34n3nWx9J3vffuRmv7jNVmgOA3-CPXC9AywiHtpaSib9XT-aw4L8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Shang, Zaixi</creator><creator>Ebenezer, Joshua Peter</creator><creator>Wu, Yongjun</creator><creator>Wei, Hai</creator><creator>Sethuraman, Sriram</creator><creator>Bovik, Alan C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6067-710X</orcidid><orcidid>https://orcid.org/0000-0002-4264-3130</orcidid><orcidid>https://orcid.org/0000-0003-4936-9784</orcidid></search><sort><creationdate>2022</creationdate><title>Study of the Subjective and Objective Quality of High Motion Live Streaming Videos</title><author>Shang, Zaixi ; Ebenezer, Joshua Peter ; Wu, Yongjun ; Wei, Hai ; Sethuraman, Sriram ; Bovik, Alan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-ebef41dfd8a26d1ef18b33183d72356ebd46dd6f0f5cbe27ee2147d023a889b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Blurring</topic><topic>Databases, Factual</topic><topic>Distortion</topic><topic>Humans</topic><topic>Image coding</topic><topic>Live Streaming</topic><topic>Motion</topic><topic>objective VQA algorithm evaluation</topic><topic>Quality assessment</topic><topic>Sports</topic><topic>Streaming media</topic><topic>video quality assessment</topic><topic>video quality database</topic><topic>Video transmission</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Zaixi</creatorcontrib><creatorcontrib>Ebenezer, Joshua Peter</creatorcontrib><creatorcontrib>Wu, Yongjun</creatorcontrib><creatorcontrib>Wei, Hai</creatorcontrib><creatorcontrib>Sethuraman, Sriram</creatorcontrib><creatorcontrib>Bovik, Alan C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Zaixi</au><au>Ebenezer, Joshua Peter</au><au>Wu, Yongjun</au><au>Wei, Hai</au><au>Sethuraman, Sriram</au><au>Bovik, Alan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the Subjective and Objective Quality of High Motion Live Streaming Videos</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2022</date><risdate>2022</risdate><volume>31</volume><spage>1027</spage><epage>1041</epage><pages>1027-1041</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Video livestreaming is gaining prevalence among video streaming service s, especially for the delivery of live, high motion content such as sport ing events. The quality of the se livestreaming videos can be adversely affected by any of a wide variety of events, including capture artifacts, and distortions incurred during coding and transmission. High motion content can cause or exacerbate many kinds of distortion, such as motion blur and stutter. Because of this, the development of objective Video Quality Assessment (VQA) algorithms that can predict the perceptual quality of high motion, live streamed videos is greatly desired. Important resources for developing these algorithms are appropriate databases that exemplify the kinds of live streaming video distortions encountered in practice. Towards making progress in this direction, we built a video quality database specifically designed for live streaming VQA research. The new video database is called the Laboratory for Image and Video Engineering (LIVE) Livestream Database. The LIVE Livestream Database includes 315 videos of 45 source sequences from 33 original contents impaired by 6 types of distortions. We also performed a subjective quality study using the new database, whereby more than 12,000 human opinions were gathered from 40 subjects. We demonstrate the usefulness of the new resource by performing a holistic evaluation of the performance of current state-of-the-art (SOTA) VQA models. We envision that researchers will find the dataset to be useful for the development, testing, and comparison of future VQA models. The LIVE Livestream database is being made publicly available for these purposes at https://live.ece . utexas.edu/research/LIVE_APV_Study/apv_index.html</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34951848</pmid><doi>10.1109/TIP.2021.3136723</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6067-710X</orcidid><orcidid>https://orcid.org/0000-0002-4264-3130</orcidid><orcidid>https://orcid.org/0000-0003-4936-9784</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2022, Vol.31, p.1027-1041
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_2614239969
source MEDLINE; IEEE Electronic Library (IEL)
subjects Algorithms
Blurring
Databases, Factual
Distortion
Humans
Image coding
Live Streaming
Motion
objective VQA algorithm evaluation
Quality assessment
Sports
Streaming media
video quality assessment
video quality database
Video transmission
Videos
title Study of the Subjective and Objective Quality of High Motion Live Streaming Videos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20Subjective%20and%20Objective%20Quality%20of%20High%20Motion%20Live%20Streaming%20Videos&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Shang,%20Zaixi&rft.date=2022&rft.volume=31&rft.spage=1027&rft.epage=1041&rft.pages=1027-1041&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2021.3136723&rft_dat=%3Cproquest_pubme%3E2619018207%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619018207&rft_id=info:pmid/34951848&rft_ieee_id=9662669&rfr_iscdi=true