Small molecule targeting of chromatin writers in cancer
More than a decade after the launch of DNA methyltransferase and histone deacetylase inhibitors for the treatment of cancer, 2020 heralded the approval of the first histone methyltransferase inhibitor, revitalizing the concept that targeted manipulation of the chromatin regulatory landscape can have...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2022-02, Vol.18 (2), p.124-133 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133 |
---|---|
container_issue | 2 |
container_start_page | 124 |
container_title | Nature chemical biology |
container_volume | 18 |
creator | Conery, Andrew R. Rocnik, Jennifer L. Trojer, Patrick |
description | More than a decade after the launch of DNA methyltransferase and histone deacetylase inhibitors for the treatment of cancer, 2020 heralded the approval of the first histone methyltransferase inhibitor, revitalizing the concept that targeted manipulation of the chromatin regulatory landscape can have profound therapeutic impact. Three chromatin regulatory pathways—DNA methylation, histone acetylation and methylation—are frequently implicated in human cancer but hundreds of potentially druggable mechanisms complicate identification of key targets for therapeutic intervention. In addition to human genetics and functional screening, chemical biology approaches have proven critical for the discovery of key nodes in these pathways and in an ever-increasing complexity of molecularly defined human cancer contexts. This review introduces small molecule targeting approaches, showcases chemical probes and drug candidates for epigenetic writer enzymes, illustrates molecular features that may represent epigenetic dependencies and suggests translational strategies to maximize their impact in cancer therapy.
The Review summarized the recent progress in chemical probes and drug candidates for epigenetic writer enzymes and discussed the implication of targeting the chromatin regulatory landscape in cancer biology and therapy. |
doi_str_mv | 10.1038/s41589-021-00920-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2614233131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614233131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-89f75177bebaf122d7fd0517c12d90fa00283cb7011bdb309997354ab9e4f6733</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzenKbTJZS6gUKLtR1yGSSOmUuNZlBfHtTp1ZwIVnknOQ7f8KH0DmGaww0vwkM81ymQHAKIAmk_ABNMeckZSyTh_uawwSdhLAGoFmG82M0oUxyIimbIvHc6LpOmq62Zqht0mu_sn3VrpLOJebNd42OXfLhq976kMTS6NZYf4qOnK6DPdvtM_R6t3iZP6TLp_vH-e0yNVTwPs2lExwLUdhCO0xIKVwJ8cBgUkpwGoDk1BQCMC7KgoKUUlDOdCEtc5mgdIauxtyN794HG3rVVMHYutat7YagSIYZoRTHNUOXf9B1N_g2_i5ShAEjQHmkyEgZ34XgrVMbXzXafyoMaqtVjVpV1Kq-tart0MUueigaW-5HfjxGgI5AiFftyvrft_-J_QItfICW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624042035</pqid></control><display><type>article</type><title>Small molecule targeting of chromatin writers in cancer</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Conery, Andrew R. ; Rocnik, Jennifer L. ; Trojer, Patrick</creator><creatorcontrib>Conery, Andrew R. ; Rocnik, Jennifer L. ; Trojer, Patrick</creatorcontrib><description>More than a decade after the launch of DNA methyltransferase and histone deacetylase inhibitors for the treatment of cancer, 2020 heralded the approval of the first histone methyltransferase inhibitor, revitalizing the concept that targeted manipulation of the chromatin regulatory landscape can have profound therapeutic impact. Three chromatin regulatory pathways—DNA methylation, histone acetylation and methylation—are frequently implicated in human cancer but hundreds of potentially druggable mechanisms complicate identification of key targets for therapeutic intervention. In addition to human genetics and functional screening, chemical biology approaches have proven critical for the discovery of key nodes in these pathways and in an ever-increasing complexity of molecularly defined human cancer contexts. This review introduces small molecule targeting approaches, showcases chemical probes and drug candidates for epigenetic writer enzymes, illustrates molecular features that may represent epigenetic dependencies and suggests translational strategies to maximize their impact in cancer therapy.
The Review summarized the recent progress in chemical probes and drug candidates for epigenetic writer enzymes and discussed the implication of targeting the chromatin regulatory landscape in cancer biology and therapy.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-021-00920-5</identifier><identifier>PMID: 34952934</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/92/458 ; 631/92/613 ; 692/699/67/1059 ; Acetylation ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Biochemical Engineering ; Biochemistry ; Biology ; Bioorganic Chemistry ; Cancer ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chromatin ; Chromatin - metabolism ; Deoxyribonucleic acid ; DNA ; DNA methylation ; DNA methyltransferase ; DNA probes ; Drug Delivery Systems ; Drug development ; Enzymes ; Epigenetics ; Gene Expression Regulation, Neoplastic - drug effects ; Genetics ; Histone deacetylase ; Histone methyltransferase ; Histones ; Humans ; Neoplasms - genetics ; Neoplasms - metabolism ; Probes ; Review Article ; Writers</subject><ispartof>Nature chemical biology, 2022-02, Vol.18 (2), p.124-133</ispartof><rights>Springer Nature America, Inc. 2021</rights><rights>2021. Springer Nature America, Inc.</rights><rights>Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-89f75177bebaf122d7fd0517c12d90fa00283cb7011bdb309997354ab9e4f6733</citedby><cites>FETCH-LOGICAL-c375t-89f75177bebaf122d7fd0517c12d90fa00283cb7011bdb309997354ab9e4f6733</cites><orcidid>0000-0001-9969-9154 ; 0000-0003-3638-7633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41589-021-00920-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41589-021-00920-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34952934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Conery, Andrew R.</creatorcontrib><creatorcontrib>Rocnik, Jennifer L.</creatorcontrib><creatorcontrib>Trojer, Patrick</creatorcontrib><title>Small molecule targeting of chromatin writers in cancer</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>More than a decade after the launch of DNA methyltransferase and histone deacetylase inhibitors for the treatment of cancer, 2020 heralded the approval of the first histone methyltransferase inhibitor, revitalizing the concept that targeted manipulation of the chromatin regulatory landscape can have profound therapeutic impact. Three chromatin regulatory pathways—DNA methylation, histone acetylation and methylation—are frequently implicated in human cancer but hundreds of potentially druggable mechanisms complicate identification of key targets for therapeutic intervention. In addition to human genetics and functional screening, chemical biology approaches have proven critical for the discovery of key nodes in these pathways and in an ever-increasing complexity of molecularly defined human cancer contexts. This review introduces small molecule targeting approaches, showcases chemical probes and drug candidates for epigenetic writer enzymes, illustrates molecular features that may represent epigenetic dependencies and suggests translational strategies to maximize their impact in cancer therapy.
The Review summarized the recent progress in chemical probes and drug candidates for epigenetic writer enzymes and discussed the implication of targeting the chromatin regulatory landscape in cancer biology and therapy.</description><subject>631/92/458</subject><subject>631/92/613</subject><subject>692/699/67/1059</subject><subject>Acetylation</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Bioorganic Chemistry</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA methyltransferase</subject><subject>DNA probes</subject><subject>Drug Delivery Systems</subject><subject>Drug development</subject><subject>Enzymes</subject><subject>Epigenetics</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genetics</subject><subject>Histone deacetylase</subject><subject>Histone methyltransferase</subject><subject>Histones</subject><subject>Humans</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Probes</subject><subject>Review Article</subject><subject>Writers</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzenKbTJZS6gUKLtR1yGSSOmUuNZlBfHtTp1ZwIVnknOQ7f8KH0DmGaww0vwkM81ymQHAKIAmk_ABNMeckZSyTh_uawwSdhLAGoFmG82M0oUxyIimbIvHc6LpOmq62Zqht0mu_sn3VrpLOJebNd42OXfLhq976kMTS6NZYf4qOnK6DPdvtM_R6t3iZP6TLp_vH-e0yNVTwPs2lExwLUdhCO0xIKVwJ8cBgUkpwGoDk1BQCMC7KgoKUUlDOdCEtc5mgdIauxtyN794HG3rVVMHYutat7YagSIYZoRTHNUOXf9B1N_g2_i5ShAEjQHmkyEgZ34XgrVMbXzXafyoMaqtVjVpV1Kq-tart0MUueigaW-5HfjxGgI5AiFftyvrft_-J_QItfICW</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Conery, Andrew R.</creator><creator>Rocnik, Jennifer L.</creator><creator>Trojer, Patrick</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9969-9154</orcidid><orcidid>https://orcid.org/0000-0003-3638-7633</orcidid></search><sort><creationdate>20220201</creationdate><title>Small molecule targeting of chromatin writers in cancer</title><author>Conery, Andrew R. ; Rocnik, Jennifer L. ; Trojer, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-89f75177bebaf122d7fd0517c12d90fa00283cb7011bdb309997354ab9e4f6733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/92/458</topic><topic>631/92/613</topic><topic>692/699/67/1059</topic><topic>Acetylation</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Bioorganic Chemistry</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA methyltransferase</topic><topic>DNA probes</topic><topic>Drug Delivery Systems</topic><topic>Drug development</topic><topic>Enzymes</topic><topic>Epigenetics</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genetics</topic><topic>Histone deacetylase</topic><topic>Histone methyltransferase</topic><topic>Histones</topic><topic>Humans</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Probes</topic><topic>Review Article</topic><topic>Writers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conery, Andrew R.</creatorcontrib><creatorcontrib>Rocnik, Jennifer L.</creatorcontrib><creatorcontrib>Trojer, Patrick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conery, Andrew R.</au><au>Rocnik, Jennifer L.</au><au>Trojer, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small molecule targeting of chromatin writers in cancer</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>18</volume><issue>2</issue><spage>124</spage><epage>133</epage><pages>124-133</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>More than a decade after the launch of DNA methyltransferase and histone deacetylase inhibitors for the treatment of cancer, 2020 heralded the approval of the first histone methyltransferase inhibitor, revitalizing the concept that targeted manipulation of the chromatin regulatory landscape can have profound therapeutic impact. Three chromatin regulatory pathways—DNA methylation, histone acetylation and methylation—are frequently implicated in human cancer but hundreds of potentially druggable mechanisms complicate identification of key targets for therapeutic intervention. In addition to human genetics and functional screening, chemical biology approaches have proven critical for the discovery of key nodes in these pathways and in an ever-increasing complexity of molecularly defined human cancer contexts. This review introduces small molecule targeting approaches, showcases chemical probes and drug candidates for epigenetic writer enzymes, illustrates molecular features that may represent epigenetic dependencies and suggests translational strategies to maximize their impact in cancer therapy.
The Review summarized the recent progress in chemical probes and drug candidates for epigenetic writer enzymes and discussed the implication of targeting the chromatin regulatory landscape in cancer biology and therapy.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>34952934</pmid><doi>10.1038/s41589-021-00920-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9969-9154</orcidid><orcidid>https://orcid.org/0000-0003-3638-7633</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2022-02, Vol.18 (2), p.124-133 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_proquest_miscellaneous_2614233131 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature |
subjects | 631/92/458 631/92/613 692/699/67/1059 Acetylation Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Biochemical Engineering Biochemistry Biology Bioorganic Chemistry Cancer Cell Biology Chemistry Chemistry and Materials Science Chemistry/Food Science Chromatin Chromatin - metabolism Deoxyribonucleic acid DNA DNA methylation DNA methyltransferase DNA probes Drug Delivery Systems Drug development Enzymes Epigenetics Gene Expression Regulation, Neoplastic - drug effects Genetics Histone deacetylase Histone methyltransferase Histones Humans Neoplasms - genetics Neoplasms - metabolism Probes Review Article Writers |
title | Small molecule targeting of chromatin writers in cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20molecule%20targeting%20of%20chromatin%20writers%20in%20cancer&rft.jtitle=Nature%20chemical%20biology&rft.au=Conery,%20Andrew%20R.&rft.date=2022-02-01&rft.volume=18&rft.issue=2&rft.spage=124&rft.epage=133&rft.pages=124-133&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-021-00920-5&rft_dat=%3Cproquest_cross%3E2614233131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624042035&rft_id=info:pmid/34952934&rfr_iscdi=true |