Small molecule targeting of chromatin writers in cancer

More than a decade after the launch of DNA methyltransferase and histone deacetylase inhibitors for the treatment of cancer, 2020 heralded the approval of the first histone methyltransferase inhibitor, revitalizing the concept that targeted manipulation of the chromatin regulatory landscape can have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2022-02, Vol.18 (2), p.124-133
Hauptverfasser: Conery, Andrew R., Rocnik, Jennifer L., Trojer, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 2
container_start_page 124
container_title Nature chemical biology
container_volume 18
creator Conery, Andrew R.
Rocnik, Jennifer L.
Trojer, Patrick
description More than a decade after the launch of DNA methyltransferase and histone deacetylase inhibitors for the treatment of cancer, 2020 heralded the approval of the first histone methyltransferase inhibitor, revitalizing the concept that targeted manipulation of the chromatin regulatory landscape can have profound therapeutic impact. Three chromatin regulatory pathways—DNA methylation, histone acetylation and methylation—are frequently implicated in human cancer but hundreds of potentially druggable mechanisms complicate identification of key targets for therapeutic intervention. In addition to human genetics and functional screening, chemical biology approaches have proven critical for the discovery of key nodes in these pathways and in an ever-increasing complexity of molecularly defined human cancer contexts. This review introduces small molecule targeting approaches, showcases chemical probes and drug candidates for epigenetic writer enzymes, illustrates molecular features that may represent epigenetic dependencies and suggests translational strategies to maximize their impact in cancer therapy. The Review summarized the recent progress in chemical probes and drug candidates for epigenetic writer enzymes and discussed the implication of targeting the chromatin regulatory landscape in cancer biology and therapy.
doi_str_mv 10.1038/s41589-021-00920-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2614233131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614233131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-89f75177bebaf122d7fd0517c12d90fa00283cb7011bdb309997354ab9e4f6733</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzenKbTJZS6gUKLtR1yGSSOmUuNZlBfHtTp1ZwIVnknOQ7f8KH0DmGaww0vwkM81ymQHAKIAmk_ABNMeckZSyTh_uawwSdhLAGoFmG82M0oUxyIimbIvHc6LpOmq62Zqht0mu_sn3VrpLOJebNd42OXfLhq976kMTS6NZYf4qOnK6DPdvtM_R6t3iZP6TLp_vH-e0yNVTwPs2lExwLUdhCO0xIKVwJ8cBgUkpwGoDk1BQCMC7KgoKUUlDOdCEtc5mgdIauxtyN794HG3rVVMHYutat7YagSIYZoRTHNUOXf9B1N_g2_i5ShAEjQHmkyEgZ34XgrVMbXzXafyoMaqtVjVpV1Kq-tart0MUueigaW-5HfjxGgI5AiFftyvrft_-J_QItfICW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624042035</pqid></control><display><type>article</type><title>Small molecule targeting of chromatin writers in cancer</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Conery, Andrew R. ; Rocnik, Jennifer L. ; Trojer, Patrick</creator><creatorcontrib>Conery, Andrew R. ; Rocnik, Jennifer L. ; Trojer, Patrick</creatorcontrib><description>More than a decade after the launch of DNA methyltransferase and histone deacetylase inhibitors for the treatment of cancer, 2020 heralded the approval of the first histone methyltransferase inhibitor, revitalizing the concept that targeted manipulation of the chromatin regulatory landscape can have profound therapeutic impact. Three chromatin regulatory pathways—DNA methylation, histone acetylation and methylation—are frequently implicated in human cancer but hundreds of potentially druggable mechanisms complicate identification of key targets for therapeutic intervention. In addition to human genetics and functional screening, chemical biology approaches have proven critical for the discovery of key nodes in these pathways and in an ever-increasing complexity of molecularly defined human cancer contexts. This review introduces small molecule targeting approaches, showcases chemical probes and drug candidates for epigenetic writer enzymes, illustrates molecular features that may represent epigenetic dependencies and suggests translational strategies to maximize their impact in cancer therapy. The Review summarized the recent progress in chemical probes and drug candidates for epigenetic writer enzymes and discussed the implication of targeting the chromatin regulatory landscape in cancer biology and therapy.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/s41589-021-00920-5</identifier><identifier>PMID: 34952934</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/92/458 ; 631/92/613 ; 692/699/67/1059 ; Acetylation ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Biochemical Engineering ; Biochemistry ; Biology ; Bioorganic Chemistry ; Cancer ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chromatin ; Chromatin - metabolism ; Deoxyribonucleic acid ; DNA ; DNA methylation ; DNA methyltransferase ; DNA probes ; Drug Delivery Systems ; Drug development ; Enzymes ; Epigenetics ; Gene Expression Regulation, Neoplastic - drug effects ; Genetics ; Histone deacetylase ; Histone methyltransferase ; Histones ; Humans ; Neoplasms - genetics ; Neoplasms - metabolism ; Probes ; Review Article ; Writers</subject><ispartof>Nature chemical biology, 2022-02, Vol.18 (2), p.124-133</ispartof><rights>Springer Nature America, Inc. 2021</rights><rights>2021. Springer Nature America, Inc.</rights><rights>Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-89f75177bebaf122d7fd0517c12d90fa00283cb7011bdb309997354ab9e4f6733</citedby><cites>FETCH-LOGICAL-c375t-89f75177bebaf122d7fd0517c12d90fa00283cb7011bdb309997354ab9e4f6733</cites><orcidid>0000-0001-9969-9154 ; 0000-0003-3638-7633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41589-021-00920-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41589-021-00920-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34952934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Conery, Andrew R.</creatorcontrib><creatorcontrib>Rocnik, Jennifer L.</creatorcontrib><creatorcontrib>Trojer, Patrick</creatorcontrib><title>Small molecule targeting of chromatin writers in cancer</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>More than a decade after the launch of DNA methyltransferase and histone deacetylase inhibitors for the treatment of cancer, 2020 heralded the approval of the first histone methyltransferase inhibitor, revitalizing the concept that targeted manipulation of the chromatin regulatory landscape can have profound therapeutic impact. Three chromatin regulatory pathways—DNA methylation, histone acetylation and methylation—are frequently implicated in human cancer but hundreds of potentially druggable mechanisms complicate identification of key targets for therapeutic intervention. In addition to human genetics and functional screening, chemical biology approaches have proven critical for the discovery of key nodes in these pathways and in an ever-increasing complexity of molecularly defined human cancer contexts. This review introduces small molecule targeting approaches, showcases chemical probes and drug candidates for epigenetic writer enzymes, illustrates molecular features that may represent epigenetic dependencies and suggests translational strategies to maximize their impact in cancer therapy. The Review summarized the recent progress in chemical probes and drug candidates for epigenetic writer enzymes and discussed the implication of targeting the chromatin regulatory landscape in cancer biology and therapy.</description><subject>631/92/458</subject><subject>631/92/613</subject><subject>692/699/67/1059</subject><subject>Acetylation</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Bioorganic Chemistry</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA methyltransferase</subject><subject>DNA probes</subject><subject>Drug Delivery Systems</subject><subject>Drug development</subject><subject>Enzymes</subject><subject>Epigenetics</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genetics</subject><subject>Histone deacetylase</subject><subject>Histone methyltransferase</subject><subject>Histones</subject><subject>Humans</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Probes</subject><subject>Review Article</subject><subject>Writers</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzenKbTJZS6gUKLtR1yGSSOmUuNZlBfHtTp1ZwIVnknOQ7f8KH0DmGaww0vwkM81ymQHAKIAmk_ABNMeckZSyTh_uawwSdhLAGoFmG82M0oUxyIimbIvHc6LpOmq62Zqht0mu_sn3VrpLOJebNd42OXfLhq976kMTS6NZYf4qOnK6DPdvtM_R6t3iZP6TLp_vH-e0yNVTwPs2lExwLUdhCO0xIKVwJ8cBgUkpwGoDk1BQCMC7KgoKUUlDOdCEtc5mgdIauxtyN794HG3rVVMHYutat7YagSIYZoRTHNUOXf9B1N_g2_i5ShAEjQHmkyEgZ34XgrVMbXzXafyoMaqtVjVpV1Kq-tart0MUueigaW-5HfjxGgI5AiFftyvrft_-J_QItfICW</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Conery, Andrew R.</creator><creator>Rocnik, Jennifer L.</creator><creator>Trojer, Patrick</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9969-9154</orcidid><orcidid>https://orcid.org/0000-0003-3638-7633</orcidid></search><sort><creationdate>20220201</creationdate><title>Small molecule targeting of chromatin writers in cancer</title><author>Conery, Andrew R. ; Rocnik, Jennifer L. ; Trojer, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-89f75177bebaf122d7fd0517c12d90fa00283cb7011bdb309997354ab9e4f6733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/92/458</topic><topic>631/92/613</topic><topic>692/699/67/1059</topic><topic>Acetylation</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Bioorganic Chemistry</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA methyltransferase</topic><topic>DNA probes</topic><topic>Drug Delivery Systems</topic><topic>Drug development</topic><topic>Enzymes</topic><topic>Epigenetics</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genetics</topic><topic>Histone deacetylase</topic><topic>Histone methyltransferase</topic><topic>Histones</topic><topic>Humans</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Probes</topic><topic>Review Article</topic><topic>Writers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conery, Andrew R.</creatorcontrib><creatorcontrib>Rocnik, Jennifer L.</creatorcontrib><creatorcontrib>Trojer, Patrick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conery, Andrew R.</au><au>Rocnik, Jennifer L.</au><au>Trojer, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small molecule targeting of chromatin writers in cancer</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>18</volume><issue>2</issue><spage>124</spage><epage>133</epage><pages>124-133</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>More than a decade after the launch of DNA methyltransferase and histone deacetylase inhibitors for the treatment of cancer, 2020 heralded the approval of the first histone methyltransferase inhibitor, revitalizing the concept that targeted manipulation of the chromatin regulatory landscape can have profound therapeutic impact. Three chromatin regulatory pathways—DNA methylation, histone acetylation and methylation—are frequently implicated in human cancer but hundreds of potentially druggable mechanisms complicate identification of key targets for therapeutic intervention. In addition to human genetics and functional screening, chemical biology approaches have proven critical for the discovery of key nodes in these pathways and in an ever-increasing complexity of molecularly defined human cancer contexts. This review introduces small molecule targeting approaches, showcases chemical probes and drug candidates for epigenetic writer enzymes, illustrates molecular features that may represent epigenetic dependencies and suggests translational strategies to maximize their impact in cancer therapy. The Review summarized the recent progress in chemical probes and drug candidates for epigenetic writer enzymes and discussed the implication of targeting the chromatin regulatory landscape in cancer biology and therapy.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>34952934</pmid><doi>10.1038/s41589-021-00920-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9969-9154</orcidid><orcidid>https://orcid.org/0000-0003-3638-7633</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2022-02, Vol.18 (2), p.124-133
issn 1552-4450
1552-4469
language eng
recordid cdi_proquest_miscellaneous_2614233131
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects 631/92/458
631/92/613
692/699/67/1059
Acetylation
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Biochemical Engineering
Biochemistry
Biology
Bioorganic Chemistry
Cancer
Cell Biology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Chromatin
Chromatin - metabolism
Deoxyribonucleic acid
DNA
DNA methylation
DNA methyltransferase
DNA probes
Drug Delivery Systems
Drug development
Enzymes
Epigenetics
Gene Expression Regulation, Neoplastic - drug effects
Genetics
Histone deacetylase
Histone methyltransferase
Histones
Humans
Neoplasms - genetics
Neoplasms - metabolism
Probes
Review Article
Writers
title Small molecule targeting of chromatin writers in cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20molecule%20targeting%20of%20chromatin%20writers%20in%20cancer&rft.jtitle=Nature%20chemical%20biology&rft.au=Conery,%20Andrew%20R.&rft.date=2022-02-01&rft.volume=18&rft.issue=2&rft.spage=124&rft.epage=133&rft.pages=124-133&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/s41589-021-00920-5&rft_dat=%3Cproquest_cross%3E2614233131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624042035&rft_id=info:pmid/34952934&rfr_iscdi=true