Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries

All-solid-state Li-ion batteries (ASSLIBs) with solid electrolytes (SEs) are promising next-generation batteries owing to their high energy density and high safety. Recently, lithium chloride SEs have attracted increasing attention because of their high ionic conductivity and broad electrochemical s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-01, Vol.14 (1), p.1241-1248
Hauptverfasser: Chun, Gin Hyung, Shim, Joon Hyung, Yu, Seungho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1248
container_issue 1
container_start_page 1241
container_title ACS applied materials & interfaces
container_volume 14
creator Chun, Gin Hyung
Shim, Joon Hyung
Yu, Seungho
description All-solid-state Li-ion batteries (ASSLIBs) with solid electrolytes (SEs) are promising next-generation batteries owing to their high energy density and high safety. Recently, lithium chloride SEs have attracted increasing attention because of their high ionic conductivity and broad electrochemical stability window. However, only a few studies have been reported for the application of lithium chloride SEs in high-energy ASSLIBs employing lithium metal anodes and high-voltage cathode materials. This study examines the interfacial stability of lithium chloride SEs toward lithium metal anodes and high-voltage cathode materials using first-principles calculations. Calculation results indicate the chemical instability of lithium chloride SEs toward lithium metal anodes. Metallic phases are formed by reduction reactions resulting in the continuous decomposition of lithium chloride SEs. In addition, lithium chloride SEs exhibit high reactivity toward high-voltage cathode materials, resulting in interfacial resistance by decomposition reactions. Computational screening is performed to explore coating materials to stabilize the interfaces, demonstrating that binary halides are appropriate for the anode and 54 compounds are discovered for the cathode. Among the coating materials for the cathode, several ternary oxides such as LiAl5O8, Li2MoO4, and LiTaO3 are found to be promising for enhancing the interfacial stability between lithium chloride SEs and high-voltage cathode materials.
doi_str_mv 10.1021/acsami.1c22104
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2614231320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614231320</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-2c5830d978b239feb9b03315fd547ec1dd91834fb663afc9c85813a29b9cfdac3</originalsourceid><addsrcrecordid>eNp1kM1PwjAYhxujEUSvHs2OxmTYr431iAsqCYkH9Lx0XSslHcW2M-HuH25hyM1TP97n90veB4BbBMcIYvTIheetHiOBMYL0DAwRozQtcIbPT3dKB-DK-zWEOcEwuwQDQlmGMGND8FPadtsFHrTdcJPMN9_SB_15eCdWJWEl42eQTnGhI7AMvNZGh91-uNBhpbs2KVfGOt3IZGmNbpKZkSI4a3ZB-kRvkqkx6WGSxnSQp9gTD7FYS38NLhQ3Xt4czxH4eJ69l6_p4u1lXk4XKScsDykWWUFgwyZFjQlTsmY1JARlqsnoRArUNAwVhKo6zwlXgokiKxDhmNVMqIYLMgL3fe_W2a8uLlq12gtpDN9I2_kK54higqKkiI57VDjrvZOq2jrdcrerEKz25qvefHU0HwN3x-6ubmVzwv9UR-ChB2KwWtvORd_-v7Zf-16Qgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614231320</pqid></control><display><type>article</type><title>Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries</title><source>ACS Publications</source><creator>Chun, Gin Hyung ; Shim, Joon Hyung ; Yu, Seungho</creator><creatorcontrib>Chun, Gin Hyung ; Shim, Joon Hyung ; Yu, Seungho</creatorcontrib><description>All-solid-state Li-ion batteries (ASSLIBs) with solid electrolytes (SEs) are promising next-generation batteries owing to their high energy density and high safety. Recently, lithium chloride SEs have attracted increasing attention because of their high ionic conductivity and broad electrochemical stability window. However, only a few studies have been reported for the application of lithium chloride SEs in high-energy ASSLIBs employing lithium metal anodes and high-voltage cathode materials. This study examines the interfacial stability of lithium chloride SEs toward lithium metal anodes and high-voltage cathode materials using first-principles calculations. Calculation results indicate the chemical instability of lithium chloride SEs toward lithium metal anodes. Metallic phases are formed by reduction reactions resulting in the continuous decomposition of lithium chloride SEs. In addition, lithium chloride SEs exhibit high reactivity toward high-voltage cathode materials, resulting in interfacial resistance by decomposition reactions. Computational screening is performed to explore coating materials to stabilize the interfaces, demonstrating that binary halides are appropriate for the anode and 54 compounds are discovered for the cathode. Among the coating materials for the cathode, several ternary oxides such as LiAl5O8, Li2MoO4, and LiTaO3 are found to be promising for enhancing the interfacial stability between lithium chloride SEs and high-voltage cathode materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c22104</identifier><identifier>PMID: 34951299</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-01, Vol.14 (1), p.1241-1248</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-2c5830d978b239feb9b03315fd547ec1dd91834fb663afc9c85813a29b9cfdac3</citedby><cites>FETCH-LOGICAL-a396t-2c5830d978b239feb9b03315fd547ec1dd91834fb663afc9c85813a29b9cfdac3</cites><orcidid>0000-0003-3912-6463 ; 0000-0002-3995-1968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c22104$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c22104$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34951299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chun, Gin Hyung</creatorcontrib><creatorcontrib>Shim, Joon Hyung</creatorcontrib><creatorcontrib>Yu, Seungho</creatorcontrib><title>Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>All-solid-state Li-ion batteries (ASSLIBs) with solid electrolytes (SEs) are promising next-generation batteries owing to their high energy density and high safety. Recently, lithium chloride SEs have attracted increasing attention because of their high ionic conductivity and broad electrochemical stability window. However, only a few studies have been reported for the application of lithium chloride SEs in high-energy ASSLIBs employing lithium metal anodes and high-voltage cathode materials. This study examines the interfacial stability of lithium chloride SEs toward lithium metal anodes and high-voltage cathode materials using first-principles calculations. Calculation results indicate the chemical instability of lithium chloride SEs toward lithium metal anodes. Metallic phases are formed by reduction reactions resulting in the continuous decomposition of lithium chloride SEs. In addition, lithium chloride SEs exhibit high reactivity toward high-voltage cathode materials, resulting in interfacial resistance by decomposition reactions. Computational screening is performed to explore coating materials to stabilize the interfaces, demonstrating that binary halides are appropriate for the anode and 54 compounds are discovered for the cathode. Among the coating materials for the cathode, several ternary oxides such as LiAl5O8, Li2MoO4, and LiTaO3 are found to be promising for enhancing the interfacial stability between lithium chloride SEs and high-voltage cathode materials.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PwjAYhxujEUSvHs2OxmTYr431iAsqCYkH9Lx0XSslHcW2M-HuH25hyM1TP97n90veB4BbBMcIYvTIheetHiOBMYL0DAwRozQtcIbPT3dKB-DK-zWEOcEwuwQDQlmGMGND8FPadtsFHrTdcJPMN9_SB_15eCdWJWEl42eQTnGhI7AMvNZGh91-uNBhpbs2KVfGOt3IZGmNbpKZkSI4a3ZB-kRvkqkx6WGSxnSQp9gTD7FYS38NLhQ3Xt4czxH4eJ69l6_p4u1lXk4XKScsDykWWUFgwyZFjQlTsmY1JARlqsnoRArUNAwVhKo6zwlXgokiKxDhmNVMqIYLMgL3fe_W2a8uLlq12gtpDN9I2_kK54higqKkiI57VDjrvZOq2jrdcrerEKz25qvefHU0HwN3x-6ubmVzwv9UR-ChB2KwWtvORd_-v7Zf-16Qgg</recordid><startdate>20220112</startdate><enddate>20220112</enddate><creator>Chun, Gin Hyung</creator><creator>Shim, Joon Hyung</creator><creator>Yu, Seungho</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3912-6463</orcidid><orcidid>https://orcid.org/0000-0002-3995-1968</orcidid></search><sort><creationdate>20220112</creationdate><title>Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries</title><author>Chun, Gin Hyung ; Shim, Joon Hyung ; Yu, Seungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-2c5830d978b239feb9b03315fd547ec1dd91834fb663afc9c85813a29b9cfdac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun, Gin Hyung</creatorcontrib><creatorcontrib>Shim, Joon Hyung</creatorcontrib><creatorcontrib>Yu, Seungho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chun, Gin Hyung</au><au>Shim, Joon Hyung</au><au>Yu, Seungho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-01-12</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>1241</spage><epage>1248</epage><pages>1241-1248</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>All-solid-state Li-ion batteries (ASSLIBs) with solid electrolytes (SEs) are promising next-generation batteries owing to their high energy density and high safety. Recently, lithium chloride SEs have attracted increasing attention because of their high ionic conductivity and broad electrochemical stability window. However, only a few studies have been reported for the application of lithium chloride SEs in high-energy ASSLIBs employing lithium metal anodes and high-voltage cathode materials. This study examines the interfacial stability of lithium chloride SEs toward lithium metal anodes and high-voltage cathode materials using first-principles calculations. Calculation results indicate the chemical instability of lithium chloride SEs toward lithium metal anodes. Metallic phases are formed by reduction reactions resulting in the continuous decomposition of lithium chloride SEs. In addition, lithium chloride SEs exhibit high reactivity toward high-voltage cathode materials, resulting in interfacial resistance by decomposition reactions. Computational screening is performed to explore coating materials to stabilize the interfaces, demonstrating that binary halides are appropriate for the anode and 54 compounds are discovered for the cathode. Among the coating materials for the cathode, several ternary oxides such as LiAl5O8, Li2MoO4, and LiTaO3 are found to be promising for enhancing the interfacial stability between lithium chloride SEs and high-voltage cathode materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34951299</pmid><doi>10.1021/acsami.1c22104</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3912-6463</orcidid><orcidid>https://orcid.org/0000-0002-3995-1968</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-01, Vol.14 (1), p.1241-1248
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2614231320
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Investigation%20of%20the%20Interfacial%20Stability%20of%20Lithium%20Chloride%20Solid%20Electrolytes%20in%20All-Solid-State%20Lithium%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Chun,%20Gin%20Hyung&rft.date=2022-01-12&rft.volume=14&rft.issue=1&rft.spage=1241&rft.epage=1248&rft.pages=1241-1248&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c22104&rft_dat=%3Cproquest_cross%3E2614231320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614231320&rft_id=info:pmid/34951299&rfr_iscdi=true