Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries
All-solid-state Li-ion batteries (ASSLIBs) with solid electrolytes (SEs) are promising next-generation batteries owing to their high energy density and high safety. Recently, lithium chloride SEs have attracted increasing attention because of their high ionic conductivity and broad electrochemical s...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-01, Vol.14 (1), p.1241-1248 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1248 |
---|---|
container_issue | 1 |
container_start_page | 1241 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Chun, Gin Hyung Shim, Joon Hyung Yu, Seungho |
description | All-solid-state Li-ion batteries (ASSLIBs) with solid electrolytes (SEs) are promising next-generation batteries owing to their high energy density and high safety. Recently, lithium chloride SEs have attracted increasing attention because of their high ionic conductivity and broad electrochemical stability window. However, only a few studies have been reported for the application of lithium chloride SEs in high-energy ASSLIBs employing lithium metal anodes and high-voltage cathode materials. This study examines the interfacial stability of lithium chloride SEs toward lithium metal anodes and high-voltage cathode materials using first-principles calculations. Calculation results indicate the chemical instability of lithium chloride SEs toward lithium metal anodes. Metallic phases are formed by reduction reactions resulting in the continuous decomposition of lithium chloride SEs. In addition, lithium chloride SEs exhibit high reactivity toward high-voltage cathode materials, resulting in interfacial resistance by decomposition reactions. Computational screening is performed to explore coating materials to stabilize the interfaces, demonstrating that binary halides are appropriate for the anode and 54 compounds are discovered for the cathode. Among the coating materials for the cathode, several ternary oxides such as LiAl5O8, Li2MoO4, and LiTaO3 are found to be promising for enhancing the interfacial stability between lithium chloride SEs and high-voltage cathode materials. |
doi_str_mv | 10.1021/acsami.1c22104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2614231320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614231320</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-2c5830d978b239feb9b03315fd547ec1dd91834fb663afc9c85813a29b9cfdac3</originalsourceid><addsrcrecordid>eNp1kM1PwjAYhxujEUSvHs2OxmTYr431iAsqCYkH9Lx0XSslHcW2M-HuH25hyM1TP97n90veB4BbBMcIYvTIheetHiOBMYL0DAwRozQtcIbPT3dKB-DK-zWEOcEwuwQDQlmGMGND8FPadtsFHrTdcJPMN9_SB_15eCdWJWEl42eQTnGhI7AMvNZGh91-uNBhpbs2KVfGOt3IZGmNbpKZkSI4a3ZB-kRvkqkx6WGSxnSQp9gTD7FYS38NLhQ3Xt4czxH4eJ69l6_p4u1lXk4XKScsDykWWUFgwyZFjQlTsmY1JARlqsnoRArUNAwVhKo6zwlXgokiKxDhmNVMqIYLMgL3fe_W2a8uLlq12gtpDN9I2_kK54higqKkiI57VDjrvZOq2jrdcrerEKz25qvefHU0HwN3x-6ubmVzwv9UR-ChB2KwWtvORd_-v7Zf-16Qgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614231320</pqid></control><display><type>article</type><title>Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries</title><source>ACS Publications</source><creator>Chun, Gin Hyung ; Shim, Joon Hyung ; Yu, Seungho</creator><creatorcontrib>Chun, Gin Hyung ; Shim, Joon Hyung ; Yu, Seungho</creatorcontrib><description>All-solid-state Li-ion batteries (ASSLIBs) with solid electrolytes (SEs) are promising next-generation batteries owing to their high energy density and high safety. Recently, lithium chloride SEs have attracted increasing attention because of their high ionic conductivity and broad electrochemical stability window. However, only a few studies have been reported for the application of lithium chloride SEs in high-energy ASSLIBs employing lithium metal anodes and high-voltage cathode materials. This study examines the interfacial stability of lithium chloride SEs toward lithium metal anodes and high-voltage cathode materials using first-principles calculations. Calculation results indicate the chemical instability of lithium chloride SEs toward lithium metal anodes. Metallic phases are formed by reduction reactions resulting in the continuous decomposition of lithium chloride SEs. In addition, lithium chloride SEs exhibit high reactivity toward high-voltage cathode materials, resulting in interfacial resistance by decomposition reactions. Computational screening is performed to explore coating materials to stabilize the interfaces, demonstrating that binary halides are appropriate for the anode and 54 compounds are discovered for the cathode. Among the coating materials for the cathode, several ternary oxides such as LiAl5O8, Li2MoO4, and LiTaO3 are found to be promising for enhancing the interfacial stability between lithium chloride SEs and high-voltage cathode materials.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c22104</identifier><identifier>PMID: 34951299</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2022-01, Vol.14 (1), p.1241-1248</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-2c5830d978b239feb9b03315fd547ec1dd91834fb663afc9c85813a29b9cfdac3</citedby><cites>FETCH-LOGICAL-a396t-2c5830d978b239feb9b03315fd547ec1dd91834fb663afc9c85813a29b9cfdac3</cites><orcidid>0000-0003-3912-6463 ; 0000-0002-3995-1968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c22104$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c22104$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34951299$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chun, Gin Hyung</creatorcontrib><creatorcontrib>Shim, Joon Hyung</creatorcontrib><creatorcontrib>Yu, Seungho</creatorcontrib><title>Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>All-solid-state Li-ion batteries (ASSLIBs) with solid electrolytes (SEs) are promising next-generation batteries owing to their high energy density and high safety. Recently, lithium chloride SEs have attracted increasing attention because of their high ionic conductivity and broad electrochemical stability window. However, only a few studies have been reported for the application of lithium chloride SEs in high-energy ASSLIBs employing lithium metal anodes and high-voltage cathode materials. This study examines the interfacial stability of lithium chloride SEs toward lithium metal anodes and high-voltage cathode materials using first-principles calculations. Calculation results indicate the chemical instability of lithium chloride SEs toward lithium metal anodes. Metallic phases are formed by reduction reactions resulting in the continuous decomposition of lithium chloride SEs. In addition, lithium chloride SEs exhibit high reactivity toward high-voltage cathode materials, resulting in interfacial resistance by decomposition reactions. Computational screening is performed to explore coating materials to stabilize the interfaces, demonstrating that binary halides are appropriate for the anode and 54 compounds are discovered for the cathode. Among the coating materials for the cathode, several ternary oxides such as LiAl5O8, Li2MoO4, and LiTaO3 are found to be promising for enhancing the interfacial stability between lithium chloride SEs and high-voltage cathode materials.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PwjAYhxujEUSvHs2OxmTYr431iAsqCYkH9Lx0XSslHcW2M-HuH25hyM1TP97n90veB4BbBMcIYvTIheetHiOBMYL0DAwRozQtcIbPT3dKB-DK-zWEOcEwuwQDQlmGMGND8FPadtsFHrTdcJPMN9_SB_15eCdWJWEl42eQTnGhI7AMvNZGh91-uNBhpbs2KVfGOt3IZGmNbpKZkSI4a3ZB-kRvkqkx6WGSxnSQp9gTD7FYS38NLhQ3Xt4czxH4eJ69l6_p4u1lXk4XKScsDykWWUFgwyZFjQlTsmY1JARlqsnoRArUNAwVhKo6zwlXgokiKxDhmNVMqIYLMgL3fe_W2a8uLlq12gtpDN9I2_kK54higqKkiI57VDjrvZOq2jrdcrerEKz25qvefHU0HwN3x-6ubmVzwv9UR-ChB2KwWtvORd_-v7Zf-16Qgg</recordid><startdate>20220112</startdate><enddate>20220112</enddate><creator>Chun, Gin Hyung</creator><creator>Shim, Joon Hyung</creator><creator>Yu, Seungho</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3912-6463</orcidid><orcidid>https://orcid.org/0000-0002-3995-1968</orcidid></search><sort><creationdate>20220112</creationdate><title>Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries</title><author>Chun, Gin Hyung ; Shim, Joon Hyung ; Yu, Seungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-2c5830d978b239feb9b03315fd547ec1dd91834fb663afc9c85813a29b9cfdac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun, Gin Hyung</creatorcontrib><creatorcontrib>Shim, Joon Hyung</creatorcontrib><creatorcontrib>Yu, Seungho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chun, Gin Hyung</au><au>Shim, Joon Hyung</au><au>Yu, Seungho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-01-12</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>1241</spage><epage>1248</epage><pages>1241-1248</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>All-solid-state Li-ion batteries (ASSLIBs) with solid electrolytes (SEs) are promising next-generation batteries owing to their high energy density and high safety. Recently, lithium chloride SEs have attracted increasing attention because of their high ionic conductivity and broad electrochemical stability window. However, only a few studies have been reported for the application of lithium chloride SEs in high-energy ASSLIBs employing lithium metal anodes and high-voltage cathode materials. This study examines the interfacial stability of lithium chloride SEs toward lithium metal anodes and high-voltage cathode materials using first-principles calculations. Calculation results indicate the chemical instability of lithium chloride SEs toward lithium metal anodes. Metallic phases are formed by reduction reactions resulting in the continuous decomposition of lithium chloride SEs. In addition, lithium chloride SEs exhibit high reactivity toward high-voltage cathode materials, resulting in interfacial resistance by decomposition reactions. Computational screening is performed to explore coating materials to stabilize the interfaces, demonstrating that binary halides are appropriate for the anode and 54 compounds are discovered for the cathode. Among the coating materials for the cathode, several ternary oxides such as LiAl5O8, Li2MoO4, and LiTaO3 are found to be promising for enhancing the interfacial stability between lithium chloride SEs and high-voltage cathode materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34951299</pmid><doi>10.1021/acsami.1c22104</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3912-6463</orcidid><orcidid>https://orcid.org/0000-0002-3995-1968</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-01, Vol.14 (1), p.1241-1248 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2614231320 |
source | ACS Publications |
subjects | Energy, Environmental, and Catalysis Applications |
title | Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Investigation%20of%20the%20Interfacial%20Stability%20of%20Lithium%20Chloride%20Solid%20Electrolytes%20in%20All-Solid-State%20Lithium%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Chun,%20Gin%20Hyung&rft.date=2022-01-12&rft.volume=14&rft.issue=1&rft.spage=1241&rft.epage=1248&rft.pages=1241-1248&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c22104&rft_dat=%3Cproquest_cross%3E2614231320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614231320&rft_id=info:pmid/34951299&rfr_iscdi=true |